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Geometry of river networks. Il. Distributions of component size and number
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The structure of a river network may be seen as a discrete set of nested subnetworks built out of individual
stream segments. These network components are assigned an integral stream order via a hierarchical and
discrete ordering method. Exponential relationships, known as Horton’s laws, between stream order and
ensemble-averaged quantities pertaining to network components are observed. We extend these observations to
incorporate fluctuations and all higher moments by developing functional relationships between distributions.
The relationships determined are drawn from a combination of theoretical analysis, analysis of real river
networks including the Mississippi, Amazon, and Nile, and numerical simulations on a model of directed,
random networks. Underlying distributions of stream segment lengths are identified as exponential. Combina-
tions of these distributions form single-humped distributions with exponential tails, the sums of which are in
turn shown to give power-law distributions of stream lengths. Distributions of basin area and stream segment
frequency are also addressed. The calculations identify a single length scale as a measure of size fluctuations
in network components. This article is the second in a series of three addressing the geometry of river
networks.

DOI: 10.1103/PhysRevE.63.016116 PACS nunier64.60.Ht, 92.40.Fb, 92.40.Gc, 68.7v

I. INTRODUCTION values. The recent work of Peckham and Gupta was the first
to address this natural generalization of Horton’s 1426].

Branching networks are an important category of all net-Our work agrees with their findings, but goes further to char-
works with river networks being a paradigmatic example.acterize the distributions and develop theoretical links be-
Probably as much as any other natural phenomena, river netiwveen the distributions of several different parameters. We
works are a rich source of scaling lajds—3|. Central quan- also present empirical studies that reveal underlying scaling
tities such as drainage basin area and stream lengths are fanctions with a focus on fluctuations and further consider
ported to closely obey power-law statist{ds-8]. The origin  deviations due to finite-size effects.
of this scaling has been attributed to a variety of mechanisms We examine continent-scale networks: the Mississippi,
including, among others, principles of optimality,9], self-  Amazon, Congo, Nile, and Kansas river basins. A$lify],
organized criticality 10], invasion percolatiofill], and ran- we also examine Scheidegger's model of directed, random
dom fluctuationg3,12—14. One of the difficulties in estab- networks[13]. Both real and model networks provide impor-
lishing any theory is that the reported values of scalingtant tests and motivations for our generalizations of Horton’s
exponents show some variatif®,7,15. laws.

With this variation in mind, we havglL6] extensively ex- We begin with definitions of stream ordering and Hor-
amined Hack’s law, the scaling relationship between basiton’s laws. Thereafter, the paper is divided into two main
shape and stream length. Such scaling laws are inherentlections. In Sec. Ill, we first sketch the theoretical generali-
broad brushed in their descriptive content. In an effort tozation of Horton’s laws. Estimates of the Horton ratios are
further improve comparisons between theory and data andarried out in Sec. IV and these provide basic parameters of
more importantly, between networks themselves, we conthe generalized laws. Empirical evidence from real
sider here a generalization of Horton’s laji¥,18. Defined  continent-scale networks is then provided along with data
fully in the following section, Horton’s laws describe how from Scheidegger's random network model in Sec. V. In
average values of network parameters change with a certa®ec. VI, we derive the higher-order moments for stream
discrete renormalization of the network. The introduction oflength distributions, and in Sec. VII, we consider deviations
these laws by Horton may be seen as one of many exampléom Horton’s laws for large basins. In the Appendix, we
that presaged the theory of fractal geoméfi§]. In essence, expand on some of the connections outlined in Sec. V, pre-
they express the relative frequency and size of network comsenting a number of mathematical considerations on these
ponents such as stream segments and drainage basins. generalized Horton distributions.

Here, we extend Horton’s laws to functional relationships  This paper is the second in a series of three on the geom-
between probability distributions, rather than simply averageetry of river networks. In the firgt16], we addressed issues

of scaling and universality and provided further motivation

for our general investigation. In the third article of the series

* Author to whom correspondence should be addressed. Electron[@1], we extend the work of the present paper by examining

address: dodds@segovia.mit.edu; URL: http://segovia.mit.edu/ the detailed architecture of river networks, i.e., how network
"Electronic address: dan@segovia.mit.edu components fit together.
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48 of stream segment lengths,=3“_,1¥ | we have that the

46 Horton ratio for stream segment lengtRgs) is equivalent to

a4 R,. Because our theory will start with distributions of the

19 we will generally use the rati® in place ofR, .

42 Horton’s laws have remained something of a mystery in
—§ 40 geomorphology—_the study of earth surface processes _and
E form—due to their apparent robustness and hence perceived
E38 lack of physical(or geological content. However, statements

36 that Horton’s laws are “statistically inevitable[31], while

Y B possibly true, have not yet been based on reasonable assump-

w10 tions [3]. Furthermore, many other scaling laws can be

32— 9 shown to follow in part from Horton’s lawg8]. Thus, Hor-

30 8 ton’s laws being without content would imply the same is

q Q H
-5 -100 95 90 -85 true for those scaling laws that follow from them. Other suf-
longitude ficient assumptions include uniform drainage densitg.,

networks are space-fillingand self-affinity of single chan-

FIG. 1. Stream segments fas=8 up t0 w=Q=11 for the 1o 1o |atter can be expressed as the reldfigB2—34

Mississippi River. The spherical coordinates of latitude and longi-
tude (measured here in degreese used and the scale corresponds [ocd )
to roughly 2000 km along each axis. I

, where L, is the longitudinal diameter of a basin. Scaling
Il. STREAM ORDERING AND HORTON'S LAWS relations may be derived and the set of relevant scaling ex-

Stream ordering was first introduced by Horton in an ef-Ponents can be reduced to just twias given above and the
fort to quantify the features of river networfd7]. The ratio INRe/InR, [8]. Note that one obtainR,=R, so that
method was later improved by Strahler to give the presen@nly the two Horton ratiosR, and R are independent.
technique of Horton-Strahler stream orderif2g]. Stream Horton ratios are thus of central importance in the full theory
ordering is a method applicable to any field where branching®f scaling for river networks.
hierarchical networks are important. Indeed, much use of
stream ordering has been made outside of the context of rivelll. POSTULATED FORM OF HORTON DISTRIBUTIONS

networks, a good example being the study of venous and . . .
g P g Y Horton’s laws relate quantities that are indexed by a dis-

arterial blood networks in biologh23—30. We describe two ¢ t of b Vv the st q T |
conceptions of the method and then discuss empirical law§ €€ S€t OF NUMDETS, namely the stream orders. They also
defined within the context of stream ordering. algebraically relate mean quantities suchags Hence, we

A network’s constituent stream segments are ordered b ay consider a generalization to functional relationships be-

an iterative pruning. An example of stream ordering for the ween probabilit'y distributions. In other words, for s.tream'
Mississippi basin is shown in Fig. 1. A source stream islengths and drainage areas, we can explore the relationships

defined as a section of stream that runs from a channel he&ftWeen probability distributions defined for each order.

to a junction with another streafffior an arboreal analogy, Furthermpre, as we have noteq, Hortons laws can be
think of the leaves of a treeThese source streams are clas-used to def'_Ve power I"?‘WS of cont!nuous variables suph as
sified as the first-order stream segments of the networlg.he probability distributions of drainage areaand main
Next, remove these source streams and identify the newt'€am length [7,8,35;

source streams of the remaining network. These are the P(a)xa ", P(l)el 3)
second-order stream segments. The process is repeated until ' '

one stream segment is left of ordex. The order of the  thege derivations necessarily only give discrete points of

network is then defined to 8. ower laws. In other words, the derivations give points as
Once stream ordering on a network has been done, a NUlfjnctions of the discrete stream orderand are uniformly

ber of natural quantities arise. These includg the number  gn5ce4 |ogarithmically and we interpolate the power law
of basins(or equivalently stream segmenfer a given order  ¢rom there. The distributions for stream lengths and areas
o; |,, the average main stream Iengﬂf), the average must therefore have structures that when combined across
stream segment length;,, the average basin area; and theorders produce smooth power laws.
variation in these numbers from order to order. Horftb] For the example of the stream segment |er1§i)ﬂ Hor-
ggg;i‘;ﬁ;?ﬁ;‘;&%?ﬂ?%ﬁ?’;& that the following ratios are to_n’s laws _state that th(_a meafp grows t_)y a_ factor oR(
with each integer step in order. In conS|der|ngP(IEf) @),
- the underlying probability distribution function fdtf), we
“=R,, —=R,, =R,. (1) postulate that Horton's laws apply for every moment of the
No+1 I Ao distribution and not just the mean. This generalization of
Horton’s laws may be encapsulated in a statement about the
Since the main stream length averaggsare combinations distribution P19, w) as

n
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P ,w)=C|(s)(Ran<s>)7°’F|<s>(|(Lf)R._(s‘f)- (4y  wherex denotes convolution. Details of the form obtained
are given in section 1 of the Appendix.
The factor of R,)~“ indicates thatfﬁs)zodl(s)P(lf) @) The next step takes us to the power-law distribution for

(R,)"® i.e., the frequency of stream segments of order main stream lengths. Summing over all stream orders and
no d y 9 integrating oveu=1, we have

decays according to Horton’s law of stream number given in
Eq. (1). Similarly, forl,, a,, andng ,, we write

0

P(|)z§:‘,l :|du P(U,w), (10)

P(l,,@)=Ci(RaRis) “Fi(1,Rs)), ©) u
_ 2y-w o where we have returned to the joint probability for this cal-
P8y, ©)=Ca(Ry)“Fa(@,Ry ), © culation. The integral oveu is replaced by a sum when
networks are considered on discrete lattices. Note that the
probability of finding a main stream of lengthis indepen-
P(No o) = Cn(Ry) 2 “F (g R ), (7) ~ dentof any sort of stream ordering since it is defined on an
unordered network. The details of this calculation may be

where constant€s, C;, C,, andc, are appropriate nor- found in section 2 of the Appendix, where it is shown that a
malizations. We have used the subscripted versions of theower lawP(l)ol ™7 follows from the deduced form of the
lengths and areas(?, |, anda,,, to reinforce that these P(lw,®) with y=INR,/InRe.
parameters are for points at the outlets of ordebasins
only. The quantityng, ,, is the number of streams of order IV. ESTIMATION OF HORTON RATIOS
within a basin of ordel). This will help with some nota-
tional issues later on. The form of the distribution functions
Fis, F|, F4, andF,, and their interrelationships become the
focus of our investigations. Since scaling is inherent in eac
of these postulated generalizations of Horton’s laws, we will
often refer to these distribution functions asaling func-
tions

We further postulate that distributions of stream segmen@

lengths are best approximated by exponential distributions "> from straight lines on the semilogarithmic axis. Such

Empirical evidence for this will be provided later on in Sec. deviations are to be expected for the smallest and largest

V. The normalized scaling functioRs(u) of Eq. (4) then orders within a basir}8,21]. For th_e smallest orde_rs, _th_e_
has the form scale of the grid used becomes an issue but even with infinite

resolution, the scaling of lengths, areas, and number for low
1 orders cannot all hold at the same tifi®. For large orders,
Fio(u)=—e Yé=F s (u;é), (8)  the decrease in sample space contributes to these fluctuations
¢ since the number of samples of orderstreams decays ex-
ponentially with order asR,,)® “. Furthermore, correla-
tions with overall basin shape provide another source of de-

appea_ralrllce with Lhz nOtagdﬁ"S)(Al\J;g)' Th.?l v:;lue 0(;,5 'S_b viations [21]. Nevertheless, in our theoretical investigations
potentially network dependent. As we will show, distribu- below, we will presume exact scaling. Note also that the

tions of main stream lengths, areas, and stream number agg . ; ;
all dependent org and this is the only additional parameter é%]uwalence OR, andR, is supported by Fig.B) where the

. _— : stream numbens,, have been inverted for comparison. Simi-
necessary for the.'r Qescrlptlon. N(_)te et both the. mean o agreement is found for the Amazon and Nile as shown in
and standard deviation &fs(u; ), i.e., for exponential dis-

tributi fluctuati ; bl h d it Tables I, Il, and Ill, which we now discuss.
ributions, fluctuations of a variable aré on the order ot ilS — 1ap16 | shows the results of regression on the Mississippi
mean value. We may therefore think éfas afluctuation

; .~ data for various ranges of stream orders for stream number,
length scale Note that the presence of exponential distribu-

. O ) . S rea, and lengths. Tables Il and Ill show the same results
tions indicates a randomness in the physical distribution o(E

; h | d this is | v the topic of thi arried out for the Amazon and Nile. Each table presents
E;SZ:FZSH emselves and this 1S largely the topic of our tifQhgimates of the four ratioR,, R,;, R, and Rys). Also

Si in st | h binati f st included are the comparisoi®,/R,, and R, /Ry, both of
ince main s rgam e”g (ss)are combinations o ,S r_ear%hich we expect to be close to unity. For each quantity, we
segment lengths, i.el,,==_,1.”, we have that the distri-

) | _ " calculate the meap, standard deviatiowr, and normalized
butions of main stream lengths of ordebasins are approxi- deviationo/ .
maFed by convoliutions of th stream segment_length distri-  Note the variation of exponents with choice of order
butions. For this step, it is m(os)re appropriate 10 US€ange. This is the largest source of error in the calculation of
conditional probabilities such a@(1;’|w) where the basin  the Horton ratios. Therefore, rather than taking a single range
order w is taken to be fixed. We thus write of stream orders for the regression, we examine a collection
© © © of ranges. Also, the deviations for high and low orders ob-
P(1,|@)=PU[D*P(I57[2)%--+P(1'|@), (9  served in Figs. @ and 2b) do of course affect measure-

and

We now examine the usual Horton laws in order to esti-
mate the Horton ratios. These ratios are seen as intrinsic
ﬁ)arameters in the probability distribution functions given
above in Eqs(4)—(7).

Figure 2a) shows the stream order averaged @ |, a,
andn for the Mississippi basin. Deviations from exponential
rends of Horton’s laws are evident and indicated by devia-

where we have introduced a new length scgadand stated its
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FIG. 2. Horton's laws for the orde® = 11 Mississippi river basin network. F@a), the ordinate axis is logarithmibase 1Qrepresenting
the number for stream numbey, (circles, km? for areaa,, (squarey and km for both main stream lengtf) (triangle$ and stream segment
Iengthljj) (diamond$. The stream ordew is dimensionless. Note the good agreement bethgeEnde) . In (b), the stream number data
n, (circles has been inverted from that {@), i.e., the plot is ofn;l. This is compared with the dimensionlesg/a,, (squaresshowing
good support for the prediction that the slopes are equal ResR,, .

ments of the Horton ratios. In all cases, we have avoidedower orders to overestimate and on higher orders to under-
using data for the smallest and largest orders. estimate the average ratios, while reasonable consistency is
For the three example networks given here, the statemenfeund at intermediate orders.
R.=R, and R=R|s) are well supported. The majority of Thus, overall the ranges chosen in the tables give a rea-
ranges giveR,/R, and R,/Rys very close to unity. The sonably even set of estimates of the Horton ratios and we
averages are also close to 1 and are different from unityvill use these averages as our estimates of the ratios.
mostly by within 1.0 and uniformly by within 1.5 standard
deviations. V. EMPIRICAL EVIDENCE
The normalized deviations, i.es;/ u, for the four ratios FOR HORTON DISTRIBUTIONS
are all below 0.05. No systematic ordering of théu is
observed. Of all the data, the values Ryrin the case of the
Mississippi are the most notably uniform having/u We now present Horton distributions for the Mississippi,
=0.015. Throughout there is a slight trend for regression omAmazon, and Nile river basins as well as the Scheidegger

A. Stream segment length distributions

TABLE |. Horton ratios for the Mississippi Rivei36]. For each range of orders(,w,), estimates of
the ratios are obtained via simple regression analysis. For each quantity, aumstandard deviationr and
normalized deviatiow/u are calculated. All ranges with2w;<w,=<8 are used in these estimates, but not
all are shown. The values obtained fgyr are especially robust while some variation is observed for the
estimates oR, andR,. Good agreement is observed between the r&kjpandR, and also betweeR,; and

Rics).

w range R, Ra R, R Ra/Rn R, /R(s)

[2,3] 5.27 5.26 2.48 2.30 1.00 1.07

[2,5] 4.86 4.96 2.42 231 1.02 1.05

[2,7] 4.77 4.88 2.40 231 1.02 1.04

[3.4] 4.72 491 2.41 2.34 1.04 1.03

[3.,6] 4.70 4.83 2.40 2.35 1.03 1.03

[3,8] 4.60 4.79 2.38 2.34 1.04 1.02

[4,6] 4.69 4.81 2.40 2.36 1.02 1.02

[4,8] 457 4.77 2.38 2.34 1.05 1.01

[5,7] 4.68 4.83 2.36 2.29 1.03 1.03

[6,7] 4.63 4.76 2.30 2.16 1.03 1.07

[7,8] 4.16 4.67 2.41 2.56 1.12 0.94

Mean u 4.69 4.85 2.40 2.33 1.04 1.03

Standard deviatiowr 0.21 0.13 0.04 0.07 0.03 0.03
alu 0.045 0.027 0.015 0.031 0.024 0.027
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TABLE Il. Horton ratios for the Amazof37]. Details are as per Table I.

w range Rn Ra R Ries) R./R, R /Ry
[2,3] 5.05 4.69 2.10 1.65 0.93 1.28
[2,5] 4.65 4.64 2.11 1.92 1.00 1.10
[2,7] 454 4.63 2.16 2.11 1.02 1.03
[3,4] 4,54 473 2.10 2.01 1.04 1.05
[3,6] 451 4.62 2.15 2.15 1.02 1.00
[3,8] 4.44 455 2.19 2.23 1.02 0.98
[4,6] 4.52 4.59 2.18 2.24 1.02 0.97
[4,8] 4.42 4,51 2.21 2.27 1.02 0.97
[5,7] 4.39 4.62 2.25 2.39 1.05 0.94
[6,7] 4.19 455 2.26 2.40 1.09 0.94
[7,8] 450 4.21 2.15 2.12 0.94 1.02

Mean 451 458 2.17 2.15 1.01 1.02

Standard deviatiowr 0.17 0.12 0.05 0.19 0.03 0.08
m 0.038 0.026 0.024 0.089 0.034 0.078

model. Scheidegger networks may be thought of as collecsured on topographies with the same resolution. The above
tions of random-walker streams and are fully define{lli@|] values of ¢ are approximate and our confidence in them
and extensively studied {r21]. The forms of all distributions would be improved with higher-resolution data. Neverthe-
are observed to be the same in the real data and in the modé&dss, they do suggest that fluctuations in network structure
The first distribution is shown in Fig.(8). This is the increase as we move from the Mississippi through to the
probability density function of ) fourth-order stream seg- Nile, and then the Amazon.
ment lengths, for the Mississippi River. Distributions for dif-
ferent orders can be rescaled to show satisfactory agreement.
This is done using the postulated Horton distribution of The distributions ofw=4 main stream lengths for the
stream segment lengths given in Ed). The rescaling is Amazon River are shown in Fig.(@. Since main stream
shown in Fig. 8b) and is for orders»n=3, ...,6.Note that  lengths are sums of stream segment lengths, their distribution
the effect of the exponential decrease in the number ofas a single peak away from the origin. However, these dis-
samples with order is evident fas=6 sinceP(Igs)) is con- tributions will not tend towards a Gaussian because the indi-
siderably scattered. Nevertheless, the figure shows the formidual stream length distributions do not satisfy the require-
of these distributions to be most closely approximated byments of the central limit theorefi89]. This is because the
exponentials. We observe similar exponential distributiongnoments of the stream segment length distributions grow
for the Amazon, the Nile, and the Scheidegger model. Thexponentially with stream order. As the semilogarithmic
fluctuation length scaléis found to be approximately 800 m axes indicate, the tail may be reasonably wblit not ex-
for the Mississippi, 1600 m for the Amazon, and 1200 m foractly) modeled by exponentials. There is some variation in
the Nile. the distribution tails from region to region. For example,
Sinceé is based on the definition of stream ordering, com-corresponding distributions for the Mississippi data do ex-
parisons of¢ are only sensible for networks that are mea-hibit tails that are closer to exponentials. However, for the

B. Main stream segment length distributions

TABLE lll. Horton ratios for the Nile[38]. Details are as per Table I. Heres2v; < w,<7.

 range Rn Ra R Ris) Ra/R, R /Ry
[2,3] 478 471 2.47 2.08 0.99 1.19
[2,5] 4.55 458 2.32 2.12 1.01 1.10
[2,7] 4.42 453 2.24 2.10 1.02 1.07
[3,5] 4.45 452 2.26 2.14 1.01 1.06
[3,7] 4.35 4.49 2.20 2.10 1.03 1.05
[4,6] 4.38 454 2.22 2.18 1.03 1.02
[5,6] 4.38 4.62 2.22 2.21 1.06 1.00
[6,7] 4.08 4.27 2.05 1.83 1.05 1.12
Mean u 4.42 4.53 2.25 2.10 1.02 1.07
Standard deviatior 0.17 0.10 0.10 0.09 0.02 0.05
um 0.038 0.023 0.045 0.042 0.019 0.045
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FIG. 3. Plot(a) shows an example distribution of stream segment Ieng’tﬂéj‘) ,w), for the Mississippi for orde®»= 4. The lengths here
are in kilometers. The semilogarithmic axes indicate the distribution is well approximated by an exponential. The value of the length scale
&[see Eq(8)] is estimated to be approximately 800 m. Rescaled versions of the same stream segment length distributieBgdocles,
w=4 (squarel w=>5 (triangles, and w=6 (diamonds, are shown in(b). The rescaling is done according to Ed). The values of the
Horton ratios used arR,,=4.69 andR,=2.33 as determined from Table I.

present work where we are attempting to characterize theork defined on a triangular lattice where at each lattice site
basic forms of the Horton distributions, we consider theseone of two directions is chosen as the stream pa&21].
deviations to be of a higher-order nature and belonging to th&igure 5a) gives a single example distribution for main

realm of further research. stream lengths of ordeb=6 basins. The tail is exponential
In accord with Eq.(5), Fig. 4b) shows the rescaling of as per the real world data. Figuré¢bb shows a collapse of
the main stream length distributions far=3,...,6. The main stream length distributions for ordass=4 through 7.

ratios usedR,=4.49 andR,=2.19(=R,=2.17) are taken In contrast to the real data where an overall basin order is
from Table II. Given the scatter of the distributions, it is fixed ({2), there is no maximum basin order here. The distri-
unreasonable to perform minimization techniques on the reshutions in Fig. %b) have an arbitrary normalization, meaning
caled data itself in order to estima® andR,. This is best that the absolute values of the ordinate are also arbitrary.
done by examining means, as we have done, and higheB®therwise, this is the same collapse as given in(&g.For
order moments, which we discuss below. Furthermore, varythe Scheidegger model, our simulations yi&g=5.20 and
ing R,, andR, from the above values by, say0.05 does not R;s=3.00[8]. For all distributions, we observe similar func-
greatly distort the visual quality of the “data collapse.” tional forms for real networks and the Scheidegger model,
Similar results for the Scheidegger model are shown irthe only difference lying in parameters such as the Horton
Fig. 5. The Scheidegger model may be thought of as a netatios.

-1
(a) (b
-15 % E)
v 3
B ¥ z
s -2 % SM\
= v v
Q-qo v v 2
= _25 % vy o
& v w R v eI
— \nvAvay s a] m h
v vV WW ) B "5 0d
-3 - -6 0 mmoeg
WV WV o
oog
35 v v =63 2 4 6 8
0 100 200 300 —®
10) I(D R[

FIG. 4. Plot(a) shows an example distribution for order=5 main stream lengthémeasured in kilometeysor the Amazon. The
distribution is unimodal with what is a reasonable approximation of an exponential t&H),distributions of main stream length fer
=3 (circles, w=4 (squares =5 (triangles, andw= 6 (diamond$ are rescaled according to E&). The values of the Horton ratios used
here areR,=4.51 andR;s=2.17, taken from Table II.
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FIG. 5. Given in(a) is an example distribution of ordes=6 main stream lengths for the Scheidegger model. Lengths are given in
arbitrary lattice units. The same form is observed as for real networks such as the AfRagaeh. In the same way as Fig(ld), (b) show
rescaled distributions of main stream length éo=4 (circles, =5 (squarel w=6 (triangles, andw=7 (diamonds$. Note that in(b),
distributions are not normalized with respect to a fixed basin didend hence the vertical offset is arbitrary. The values of the ratios used
here areR,=5.20 andR,=3.00[8].

C. Drainage area distributions agreement witlR,=4.53, the respective standard deviations

Figure 6 shows more Horton distributions, this time for being 0.17 and 0.10. Both figures are taken from the data of

drainage area as calculated for the Nile river basin. In Fig. GTabIe 1.
an example distribution fap =4 subbasins is presented. The
distribution is similar in form to those of main stream lengths
of Fig. 4, again showing a reasonably clear exponential tail.
Rescaled drainage area distributionsdor 3, . . . ,6 arepre-
sented in Fig. @). The rescaling now follows Ed6). Note
that if R, andR, were not equivalent, the rescaling would be
of the form

D. Summing distributions to form power laws

As stated in Sec. Ill, the Horton distributionsaj, andl
must combine to form power-law distributions farand |
[see Eqgs(3) and(10)]. Figure 7 provides empirical support
for this observation for the example main stream lengths of
the Mississippi network. The distributions fer=3, 4, and 5
main stream lengths are individually shown. Their combina-
tion together with the distribution df; gives the reasonable
approximation of a power law as shown. The area distribu-
tions combine in the same way. Note that the distributions do
not greatly overlap. Each point of the power law is therefore

P(a,,0)=Ca(RyRa)s™ “Fa(a,Ry ). 11

Since we have asserted tii=R,, Eq.(11) reduces to Eq.
(6). The Horton ratio used here i&,=4.42, which is in good

-4
(a) (b)
45 Dﬁ%
: [m] %%‘
_
8 i
2 -5t 0 o
= ]
= gl
=
= 55 o _n v
éﬂ o D%EDD o v
DDDD o v
—6 oTh
a Wy W
o0 oo
-6.5 -8.5 Som
0 200 400 600 0 0.5 1 1.5 2
-
a(l) ag)Rn

FIG. 6. The distribution of drainage areas for4 subbasins of the Nile are shown(@. All areas are measured in RmAn exponential
tail is observed as per the distributions of stream segment léRigh3 and main stream lengttirig. 4). In (b), distributions of drainage
area forw=3 (circles, w=4 (squarel =5 (triangles, andw=6 (diamonds, are rescaled according to E®). The rescaling uses the
estimateR,=4.42 found in Table IlI.
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lnglm

FIG. 7. Summation of main stream length distributions for the  FIG. 8. Comparison of number and area distributions for the
Mississippi. Both axes are logarithmic, the unit of length is the Scheidegger model. Area is in terms of square lattice units. In the
kilometer and the vertical axis is probability density with units of inset plot, the raw distributions shown aR{ag|6) (circles and
km~2. Distributions ofl, for ordersw =3 (circles, w=4 (squarey P(ne16) (continuous ling The latter is the probability of finding
andw=5 (triangles, are shown. As expected, the distributions sumng ; source streams in an order=6 basin. In the main plot, the
together to give a power-law tatarg. The power-law distribution  number distribution has been rescaled to béP{/% 4/6) as a func-
(which is vertically offset by an order of magnitude for clayitg tion of 4ng ; and the area distribution is unrescaléite symbols are
the summation of the distributions below as well as the distributionthe same as for the inset ploFor the Scheidegger model, source
for order =6 main stream lengths. streams occur at any site with probability of 1/4, hence the rescaling

by a factor of 4.
the addition of significant contributions from only two or
three of the separate distributions. The challenge here then mcause the individual distributions are identical and the cen-
to understand how rescaled versionsFpf being the basic tral limit theorem would apply. However, because the fluc-
form of the P(l,,w), fit together in such a clean fashion. tuations in the total number of stream segments are so great,
The details of this connection are established in section 2 ofve lose too much information with this approach. Indeed, the

the Appendix. distribution of area drained by orderstream segments in a
basin reflects variations in their number rather than length.
E. Connecting distributions of number and area Again, we meet up with the problem of the numbers of dis-

L . S tinct orders of stream segment lengths being dependent.
In considering the generalized Horton distributions for One final way would be to use Tokunaga's IF8y40—43.
number and area, we observe two main points: a CaICUIat'O'?okunaga’s law states that the number of ordemside

in the vein of what we are able to do for main stream length&branches along afabsorbing stream segment of order is
is difficult; and, the Horton distributions for area and numbergiven by

are equivalent.
In principle, Horton area distributions may be derived Te=T1(Ris) 1, (12)
from stream segment length distributions. This follows from
an assumption of statistically uniform drainage densitywherek=u—v. The parameterf, is the average number of
which means that the typical drainage area drained per unglide streams having order=— 1 for every orderu ab-
length of any stream is invariant in space. Apart from thesorbing stream. This gives a picture of how a network fits
possibility of changing with space, which we will preclude together and may be seen to be equivalent to Horton’s laws
by assumption, drainage density does naturally fluctuate g8]. Now, even though we also understand the distributions
well [16]. Thus, we can Writeaszwlff), where the sum is underlying Tokunaga’s lawl6], similar technical problems
over all orders and all stream segments and the average arise. On descending into a network, we find the number of
drainage density. stream segments at each level to be dependent on all of the
However, we need to know, for an example basin, howabove.
many instances of each stream segment occur as a function Nevertheless, we can understand the relationship between
of order. For example, the number of first-order streams in atthe distributions for area and number. What follows is a gen-
order() basin isng, ;. Given the distribution of this number, eralization of the finding thaR,=R,. The postulated forms
we can then calculate the distribution of the total contribu-for these distributions were given in Eq$) and (7). Con-
tion of drainage area due to first-order streams. But the dissiderng, ;, the number of first-order streams in an order
tributions ofng, , are not independent, so we cannot proceedasin. Assuming that, on average, first-order streams are dis-
in this direction. tributed evenly throughout a network, then this number is
We could potentially use the typical number of order simply proportional ta, . As an example, Fig. 8 shows data
streams, R,)¥ “. Then, the distribution of total area obtained for the Scheidegger model. For the Scheidegger
drained due to ordew streams would approach Gaussianmodel, first-order streams are initiated with a 1/4 probability
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Mississippi: Horton moments Assuming scaling holds exactly across all orders, the above
10 is precisely((1{Y)9). Note that((1{?)%=q!(I1{)9. Since
g ° the characteristic length of orderstreams isR;9)“ !, we
¢ g therefore have
o g (s) -1 (s)
« g 1 (1)) =al(Ry) @ DI=qr(IS)a. (15
“Ae 10° % Since main stream lengths are sums of stream segment
by % lengths, so are their respective moments. Hence,
4 o & % 2 5 -
107 ¥ A3
54 a3 ((1)9= 2 (10,
O 7 k=1
A
o o v 9 ®
12345678 91011 => ql&(Rys) kDo,
order ® k=1
FIG. 9. A comparison of moments calculated for main stream ®
length distributions for the Mississippi River. Lengths are in kilo- =q| ng (R|<s>)(k_1)q,
meters. k=1

when the flow at the two upstream sites is randomly directed —q! £ (Rie)™—1
away, each with probability 1/2. Thus, for an ag, we ' Ris—1
expect and findhg, ,=an/4.

For higher internal orders, we can apply a simple renor\We can now determine the log-space separation of moments
malization. Assuming a system with exact scaling, the num©f main stream length. Using Stirling’s approximatipt]
ber of streams;,, , is statistically equivalent to,_,,,,.  thatInn!~(n+1/2)inn—n we have

Since the latter is proportional t, . 1, we have that (1) ~a[ £+ (Ris)“+Ing]+C (17)

nw,w:pwaﬂ—a)+1! (13)

(16)

whereC is a constant. The Ig term inside the square brack-
where the constant of proportionality is the density of orderets in Eq.(17) creates small deviations from linearity for 1
w streams, Clearly, this equivalence improves as number in<=w=15. Thus, in agreement with Fig. 9, we expect approxi-
creases, i.e., the differen€®— w increases. mately linear growth of moments in log space.

While we do not have exact forms for the area or number

distributions, we note that they are similar to the main stream  v|. LIMITATIONS ON THE PREDICTIVE POWER
length distributions. Since source streams are linear basins OF HORTON'S LAWS
with the width of a grid cell, the distribution od; is the
same as the distribution ¢f and!{®, a pure exponential. _ last se : ,
Hence,n,, o_; is also an exponential. For increasiag the scal_lng Wlth_m thls g_enerahzed p|ct_ure of Hor_ton’s laws. T_h_e
distribution ofa, becomes single peaked with an exponen—bas'c question is, given an approximate scaling for quantities

tial tail, qualitatively the same as the main stream lengtn€@sured at intermediate stream orders, what can we say
distributions. about the features of the overall basin?

As noted in the previous section, all moments of the gen-
eralized Horton distributions grow exponentially with order.
Coupling this with the fact that,,=R, “, i.e., the number of

Finally, we discuss the higher-order moments for the gensamples of ordetw basins decreases exponentially with
eralized Horton distributions. Figure 9 presents moments fowe observe that a basin'a and | will potentially differ
distributions of main stream lengths for the case of the Mis-greatly from values predicted by Horton’s laws.
sissippi. These moments are calculated directly from the To illustrate this, Fig. 10 specifically shows the distribu-
main stream length distributions. A regular logarithmic spactionsP(l3) andP(l,) scaled up to givé>(l,) for the Congo
ing is apparent in moments for orders ranging from 3 to 7. river. The Congo’s actual length measured at this 1000-m

To see whether or not this is expected, we detail a fewesolution is represented by the solid line and is around 57%
small calculations concerning moments starting from the exef the distribution’s mean, as indicated by the dashed line.
ponential form of stream segment lengths given in 8.  Nevertheless, we see that the measured length is within a
As noted previously, for an exponential distribution, standard deviation of the predicted value.

In this last section, we briefly examine deviations from

VI. HIGHER-ORDER MOMENTS

Fio(u)=£ e Y¢, the mean is simplyu)=¢£. In general, In Table IV, we provide a comparison of predicted versus
the gth moment of an exponential distribution is measured main stream lengths and areas for the basins stud-

. . ied here. The mean for the scaled up distributions overesti-

(udy= J' — e Wiqy= gqf xde X dx=q! £9. mates the actual_ values in all cases except for the Nile. Also,

u=0 & x=0 apart from the Nile, all values are within a standard deviation

(14 of the predicted mean. The coefficients of varia-tiog/ag
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42107 both agreement with and inspiration for the generalizations
‘ o of Horton’s laws. Finally, we have identified a fluctuation
1.2 o length scale¢ that is a reinterpretation of what was previ-
O . . e
~ @S ously identified as only a mean value. We see the study of
g - ! E@DD% the generalized Horton distributions as integral to increasing
ms 0.8 $ our understanding of river network structure. We also sug-
= gest that practical network analysis be extended to measure-
s 0.6 % ments of distributions and the length scglwith the aim of
R refining our ability to distinguish and compare network
& o structure.
020 o By taking account of fluctuations inherent in network
0 & scaling laws, we are able to see how measuring Horton’s
0 laws on low-order networks is unavoidably problematic.
I R () x 10 Moreover, as we have observed, the measurement of the
o 1 Horton ratios is in general a delicate operation, suggesting

FIG. 10. Comparing the generalizeql Horton length distriputionthat many previous measurements are not without error.
rescaled to the level of ordéd=11 basins with the Congo River The theoretical understanding of the growth and evolution
itself. Lengths are in kilometers. The two distributions are for or- of river networks requires a more thorough approach to mea-
dersw=3 (squaresandw=4 (circles stream lengths and the Hor- ¢, -ement and a concurrent improvement in the statistical de-
ton ratio is estimated to b, =2.39. The dashed line represents the scription of river network geometry. The present consider-
mean of these scaled up distributions, while the solid line marksation of a generalization of Horton's laws is a necessary step
I11, the measured length of the Congo at a 1000-m resolution. Thg, ihis process, giving rise to stronger tests of both real and
actual length is within a standard deviation of the mean beingsynthetic data. In the following papg21], we round out this
around 50% ofl ;. Table IV shows comparisons for various river expanded picture of network structure by considering the
networks for both area and length data. spatial distribution of network components.

and g /I_Q, all indicate that fluctuations are on the order of
the expected values of stream lengths and areas. ACKNOWLEDGMENTS

Thus, we see that by using a probabilistic point of view, The work was supported in part by NSF Grant No. EAR-
this generalized notion of Horton's laws provides a way of 706220 and the U.S. Department of Energy, Grant No. DE
discerning the strength of deviations about the expecteggn, g9ER 15004. The authors would like to express their

lme_an. In general, stronger deviations would imply that ge0g it ide to H. Cheng for enlightening and enabling discus-
ogic conditions play a more significant role in setting thesions

structure of the network.

VIIl. CONCLUSION APPENDIX: ANALYTIC CONNECTIONS BETWEEN

o . STREAM LENGTH DISTRIBUTIONS
The objective of this work has been to explore the under-

lying distributions of river network quantities defined with  In this appendix, we consider a series of analytic calcula-
stream ordering. We have shown that functional relationiions. These concern the connections between the distribu-
ships generalize all cases of Horton's laws. We have identitions of stream segment Iengtih‘g), ordered basin main
fied the basic forms of the distributions for stream segmenstream lengths,, and main stream lengtis We will ide-
lengths(exponentigl and main stream lengtiisonvolutions  alize the problem in places, assuming perfect scaling and
of exponentialsand shown a link between number and areainfinite networks, while making an occasional salubrious ap-
distributions. Data from the continent-scale networks of theproximation. Also, we will treat the problem of lengths fully
Mississippi, Amazon, and Nile river basins as well as fromnoting that derivations of distributions for areas follow simi-
Scheidegger’'s model of directed random networks providesar, but more complicated lines.

TABLE IV. Comparison of predicted versus measured main stream lengths for large scale river networks. The dimensions of all lengths
and areas are $n and 162m?, respectively. Herd,, is the actual main stream length of the basigthe predicted mean value bf , o,
the predicted variance, ang /1  the normalized deviation. The entries for the basin area data have corresponding definitions.

Basin lo |_(), (o lo /l_(l g /I_(l agn EQ (o agn /EQ 04 /59
Mississippi 4.92 11.10 5.60 0.44 0.51 2.74 7.55 5.58 0.36 0.74
Amazon 5.75 9.18 6.85 0.63 0.75 5.40 9.07 8.04 0.60 0.89
Nile 6.49 2.66 2.20 2.44 0.83 3.08 0.96 0.79 3.19 0.82
Congo 5.07 10.13 5.75 0.50 0.57 3.70 10.09 8.28 0.37 0.82
Kansas 1.07 2.37 1.74 0.45 0.73 0.14 0.49 0.42 0.28 0.86
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We begin by rescaling the form of stream segment lengttine theK ,(u;a) for o=2 andw= 3 and identify the emerg-
distributions ing pattern. Fod=(a;,a,) we have, omitting the prefactors
for the time being,

P, 0)=(R,—1)(R,Ris) “Fia(IR;s). (A1)

e a1u_ g—axu e a1u e~ a2u
The normalizatiorC,s=R,— 1 stems from the requirement e ke %2l= — =+ ——
" a;—a a;—a, a;—a;
that ”
foo Flo(u)=1 (A2) providinga; #a,. Convolving this withe 23", we obtain
|(S) =4,
u=0

e— aqly e— ApUy e— agu

which is made purely for aesthetic purposes. As we have

suggested in Eq8) and demonstrated empirical support for, =

Fi9(u) is well approximated by the exponential distribution

£ le V¢ For lowu and also we have noted that deviations e au_g-asu @ au_ g—asu

do of course occur, but they are sufficiently insubstantial as =
> P a;—ay)(a;—a a;—ay)(a,—a

to be negligible for a first-order treatment of the problem. (B1732)(81785) (217 3y)(3;~3y)

e AU_g-ay
—  |xe AU

a;—a;

e au e au
1. Distributions of main stream lengths as a function - (a;—a,)(a;—as) + (a,—a;)(a,—as)
of stream order
efagu
We now derive a form for the distribution of main stream + ) (AB)
lengths P(I,|w). As we have discussed, since, (az—ay)(az—ay)
=3¢ 19 we have the convolutiof®). The right-hand side Generalizing from this point, we have

of Eq. (9) consists of exponentials as per E§), so we now

consider the functiork ,(u;&) given by e~ au

aiu aLu a,u Kw(u;é):(ﬂl ai)zlw—. (AG)
a)= TaUy T@lUx...xg e 2 A3 i= i=
K,(u;d)=aje ae » (A3) | ]1_[#_ (a—a;)

=1,j#i
whered=(a;,a,,...,a,). We are specifically interested in _ Y
the case when no two of the are equal, i.e.a;# a; for all Now, settinga;=1/(£(R;s)' 1) and carrying out some ma-
i #j. To compute thiss-fold convolution, we simply exam- nipulations we obtain the following expression ol , ,w):

1 1 e lo/ERe) !

>
R T AT ' .
]_1:[1 g(Rl(s))'_l 1 | 11_[_# [1/§(R|(S))I_l_1/§(R|(s))l_l]

=1

P(lw,w)Z(

w

I[I R TIT (R
j=1]#i

1 1 ¢ ic1 j=1j#i
= =l [E(R(9) w—1
(Rn)” '712413 ¢ . -1 i-1
H (RI(S))J - H - (R|(s))J _(R|(s))|
=1 j=1,#i
1 w-1 @ (RI(S))_Z(i_l)H (RI(S))i_j'H (R|(S))j_1H (R|(s))_(j_1)
- 2 eflw/g(le)i*l =1 j=1 k=1
R” & & e —
(RI(S)) (@ ) H ) (R|(s))]—(R|(s))
j=1j#i
_ 1 Eﬁ e*lwlg(RHs))i‘l(R|(s))(i71)(w72)(RI(5))w72/R|(S)
(R &= @ ‘ i
I (Re)=(Rs)
J=l,]$|
@ . i(w—2)
_ 1 ololeRei i (RIO) . (A7)
(Rn)” ERi0 =1 © _ _
I (R = (R)
J=1j#i
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Note that we have added in a factor of R/j“ for the ap- 1 poi p(n=i)i
propriate normalization. In addition, one observes that == —I—E =
P(0,0)=0 for all ®>1 since all convolutions of pairs of ri(r—r) n=t g H (ri—rh
exponentials vanish at the origin. Furthermore, the tail of the j=1 i =i
distribution is dominated by the exponential corresponding .
to the largest stream segment. _ 1 1 D 1
The next step is to connect to the power-law distribution Ti-l righ < 1
of main stream length®?(1) (see Fig. 7 and the accompa- IT «i-i-1) IT sricri=rh
nying discussion On considering Eq(10), we see that the =1 =i+l
problem can possibly be addressed with some form of
asymptotic analysis. = -
Before attacking this calculation, however, we will sim- r's'! N =
plify the notation keeping only the important details of the
P(l,,»). Our main interest is to see how E4O) gives rise
to a power law. We transform the outcome of E47) by 1 1
usingn=w, u=I,/¢, r=Rys, ands=R,,, neglecting mul- =4
tiplicative constants and then summing over stream orders to (ri-i—1)
obtain j=1

j=i+1

1
n

r(n—2)ie—u/ri’1 1 -1 (
S

21 n . (A8) :rISI 1—1

II «i-r [T (1-r%

j=1j#i k=1

o com 1
G(u)=n§1 m; kﬂl s(r“—l))'

The integration ovet, has been omitted, meaning that the In reaching the last line, we have shifted the indices in sev-
result will be a power law with one power lower than ex- eral places. In the last bracketed term we haveksef—i

pected. and therm=n—1i, while in the first bracketed term, we have
used—k=j—i. Immediately of note is that the last term is
2. Power-law distributions of main stream lengths independent of and may thus be ignored.

The first bracketed term does dependiphut converges
rapidly. Writing D;=II}_1(1-r) we have thatD;
= DmHL;lm(l— r—¥). Takingmto be fixed and large enough
such that r ¥ is approximated well by eXp-r = for k
=m, we then have

We now show that this sum of exponenti@gu) in Eq.
(A8) does in fact asymptotically tend to a power law. We
first interchange the order of summation replaciig ;=" ;
with =, =7_; to give

o0 0 _2)-
Gu=> e ' Y L -
= =R . Di=Dpnexp >, —r X
s 11 =) o
j=1j#i rl—m
o _ _ i-m—1
:E Cie’“”i_l. (A9) —Dmexp[—(r_l)(l 1 )]. (A11)

i=1

) ) . Asi—x, D, clearly approaches a product bf,, and a con-
We thus simply have a sum of exponentials to contend withgiant. Therefore, the first bracketed term in E&10) may
The coefficientsC; appear unwieldy at first, but do yield a 5i5o e neglected in an asymptotic analysis.

simple expression after some algebra that we now perform: Hence, ag—, the coefficient<C; are simply given by

Ci=nZln—__ Ciee o7 (A12)
s" (rl=r"
j=1j#i

. rin=2) (A10) 1

and we can approximat@(u) as, boldly using the equality
1 p(n=2)i sign,

=7=1 nE: n
I NGRSO | IR
i=1 j=i+1

I
p(i-2)i 17 gr(n=2)ip—(i-2) .
=17 g& where A comprises the constant part of tk and factors
T o=y " s [T (rierh) picked up by shifting the lower limit of the indexfrom 1 to
j=1 1 0. We have also used here the identification

* e—u/ri

G(u)=AS(u)=AiZO plee R (A13)

j=i+
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FIG. 11. ContourC used for evaluation of the integral given in
Eq. (A16). The poles are situated at+0i wherene{0,1,2...}. FIG. 12. ContoulC’ used for evaluation of the integral given in
Eq. (A17) as deduced from conto@® (Fig. 11) with the transfor-
h T, . S
s=r7. (A14) mationp=r % The negative real axis is a branch cut.

We turn now to the asymptotic behavior $fu), this being The integral S(u) is now given by S(u)=I(u)+c.c.,

the final stretch of our analysis. where

There are several directions one may take at this point. ~1 [imcosminplinr
We will proceed by employing a transformation $(fu) that l(u)= 7] f —— e Uprdp. (A18)
is sometimes referred to as the Sommerfeld-Watson transfor- Hinr Jo sinainplinr

mation and also as Watson's lemrjd5], p. 239. Given a
sum over any set of integetssayS=2,,_,f(n), it can be
written as the following integral:

Writing p=o+i7 with 0=0, we havedp=id r and the fol-
lowing for the cos and sin terms:

iw/lnr_i_pfiﬂrrllnr

1 7 COSTZ coswinplinr= >

=— ¢ —f(2)dz Al15
2 Jc sinwz (2) ( )
Amlinrg- 22 Inr 4 pimlin rew2/2 Inr

whereC is a contour that contains the points on the real axis = ,

n+i0 wherenel and none of the points of the same form 2
with ne Z/1. Calculation of the residues of the simple poles (A19)
of the integrand return us to the original sum.
Applying the transformation t&(u), we obtain and
1 COSTZ iﬂ-llnr_pfiﬂ-llnr
I T A E R ) sinwlnp/inr=——F——
S(u) 2mi P sinmz e r dz. (A16) 2i

) o pmlinrg=m?2Int _ _—im/inrgm?/2Inr
The contourC is represented in Fig. 11. =

We first make a change of variables* = p. Substituting 2i
this anddz= —dp/p Inr into Eq.(A16) we have (A20)
1 fﬁ racog—mlinpl/inr) The cot term in the integrand becomes
S(W=554 o sin(—mInp/inr) . )
cosminp/inr 1427 mINT 14 5(7)
x e~ Up+(—dplpinr) sinminplinr ' 1_ g w2t ' 1-(7)’
1 racog—minplinr) (A21)
=— - e “p¥dp.
2ilnr Jo  sinwinp/inr
/P
(A17) c”
The transformed contou®’ is depicted in Fig. 12. +i ]
As u—o, the contribution to integral from the neighbor-
hood ofp=0 dominates. The introduction of the sin and cos 0 N
terms has created an interesting oscillation that has to be —i A
handled with some care. We now deform the integration con-
tour C’ into the contourlC” of Fig. 13 focusing on the inter-

val along the imaginary axis—i,i]. Choosing this path will
simplify the cos and sin expressions, which at present have FIG. 13. ContouC” used for evaluation of the integral given in
logs in their arguments. Eg. (A16). The poles are situated at-0i wherene{0,1,2 ...}.
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wheres(7)=27"e=™"" The integral (u) now becomes

2Int Jo1=a(r) = T
eiw(1+'y)/2 1 ) 1+ 5(7_)
- —wr .y -
>InT Jo T 1= 6(7) dr. (A22)

_ 772/In r

Now, since|d(7)|=e <10 * (taking r=R;9~2.5),
we can expand the expression as follows:

1o 1+6)(1+ 6+ 8%+
m—( )( )
=1+25+28%+28%+---. (A23)

The integral in turn becomes

[(u)=

i1ty 1
f dr Tye—iUT(1+ 2 p2imlinr o= m2lnr
2Inr Jo

+27_4i77/Inre—2772/Inr+,”_’_27_2ni7rllnre—mr2/Inr+,_‘)_
(A24)

The basicnth integral in this expansion is
1 . .
In(u):f 7_'y+2nl77/|nre—|UTdT. (A25)
0

Substitutingu=w and replacing the upper limit=u with
w=o we have

oo
|n(u):uf(l+'y+2nlﬂ'/|nr)JA dWW’y+2n|ﬂ/|nr87|W
0
o)
:(iu)7(1+y+2nifrllnr)J' idW(iW)erZniﬂ-/InrefiW
0

— (iu)7(1+ y+2nim/In r)J'oodv(v)«wZniw/In re—v
0

=(ju)~AFrrenia/nnOr .y 4+ 2nia/inr). (A26)

Here, we have rotated the contour along the imaginary

axis to the reab axis and identified the integral with the

PHYSICAL REVIEW B3 016116

o

1 )
+ —2niw/Inr + i i
STnrult? 1 2n§:lu I'(y+2niw/inr)

[(u)=
(A27)

We now need to show that the higher-order terms are negli-
gible. Note that their magnitudes do not vanish with increas-
ing u, but instead are highly oscillatory terms. Using the
asymptotic form of the Gamma functigr6]

[(z)=27 Y 2271+ 0(1/2)], (A28)

we can estimate as follows for largethat

IT(1+y+2nimlinr)|
~|(2imn/Inr+ 1+ 7)2iwn/|n r+1/2+ ye_y_l\/ﬂ|
= |(ei 77/227Tn/|n r)Ziﬂ'nlln r+1/2+ Yo~ 771\/%|

:e—'n'zr'lllnrny+l/2(2ﬂ_/e)1+y(|nr)-l/Z—‘y_ (A29)
Hence,I'(1+ y+2ni#/Inr) vanishes exponentially with.
For the first few values oh taking y=3/2 andr=2.5, we
have T'(1+y+2iw/Inr)=25x10° and TI(1+y
+4im/Inr)=2.1x10"% showing that these corrections are
negligible.

Hence we are able to estime®€u) to first order as

1
S(U)—WU .

(A30)
Thus, we have determined that a power law follows from the
initial assumption that stream segment lengths follow expo-
nential distributions.

This equivalence has been drawn as an asymptotic one,
albeit one where convergences have been shown to be rapid.
The calculation is clearly not the entire picture as the solu-
tion does contain small rapidly-oscillating corrections that do
not vanish with increasing argument. A possible remaining
problem and one for further investigation is to understand
how the distributions for main stream lengthsfit together
over a range that is not to be considered asymptotic. Never-
theless, the preceding is one attempt at demonstrating this
rather intriguing breakup of a smooth power law into a dis-

gamma functiorl’ [44]. The integral can now be expressed crete family of functions built up from one fundamental scal-

as

ing function.
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