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Geometry of river networks. II. Distributions of component size and number
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The structure of a river network may be seen as a discrete set of nested subnetworks built out of individual
stream segments. These network components are assigned an integral stream order via a hierarchical and
discrete ordering method. Exponential relationships, known as Horton’s laws, between stream order and
ensemble-averaged quantities pertaining to network components are observed. We extend these observations to
incorporate fluctuations and all higher moments by developing functional relationships between distributions.
The relationships determined are drawn from a combination of theoretical analysis, analysis of real river
networks including the Mississippi, Amazon, and Nile, and numerical simulations on a model of directed,
random networks. Underlying distributions of stream segment lengths are identified as exponential. Combina-
tions of these distributions form single-humped distributions with exponential tails, the sums of which are in
turn shown to give power-law distributions of stream lengths. Distributions of basin area and stream segment
frequency are also addressed. The calculations identify a single length scale as a measure of size fluctuations
in network components. This article is the second in a series of three addressing the geometry of river
networks.

DOI: 10.1103/PhysRevE.63.016116 PACS number~s!: 64.60.Ht, 92.40.Fb, 92.40.Gc, 68.70.1w
et
le
n

re

sm

-
in

s
n
t
n

on

w
rta
o
p

om

ip
g

first

ar-
be-
We
ling
er

pi,

om
r-
n’s

r-
in

ali-
re
s of
al

ata
In

am
ns
e
re-
ese

om-
s
on
ies
ing
rk

on
I. INTRODUCTION

Branching networks are an important category of all n
works with river networks being a paradigmatic examp
Probably as much as any other natural phenomena, river
works are a rich source of scaling laws@1–3#. Central quan-
tities such as drainage basin area and stream lengths a
ported to closely obey power-law statistics@1–8#. The origin
of this scaling has been attributed to a variety of mechani
including, among others, principles of optimality@1,9#, self-
organized criticality@10#, invasion percolation@11#, and ran-
dom fluctuations@3,12–14#. One of the difficulties in estab
lishing any theory is that the reported values of scal
exponents show some variation@6,7,15#.

With this variation in mind, we have@16# extensively ex-
amined Hack’s law, the scaling relationship between ba
shape and stream length. Such scaling laws are inhere
broad brushed in their descriptive content. In an effort
further improve comparisons between theory and data a
more importantly, between networks themselves, we c
sider here a generalization of Horton’s laws@17,18#. Defined
fully in the following section, Horton’s laws describe ho
average values of network parameters change with a ce
discrete renormalization of the network. The introduction
these laws by Horton may be seen as one of many exam
that presaged the theory of fractal geometry@19#. In essence,
they express the relative frequency and size of network c
ponents such as stream segments and drainage basins.

Here, we extend Horton’s laws to functional relationsh
between probability distributions, rather than simply avera
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values. The recent work of Peckham and Gupta was the
to address this natural generalization of Horton’s laws@20#.
Our work agrees with their findings, but goes further to ch
acterize the distributions and develop theoretical links
tween the distributions of several different parameters.
also present empirical studies that reveal underlying sca
functions with a focus on fluctuations and further consid
deviations due to finite-size effects.

We examine continent-scale networks: the Mississip
Amazon, Congo, Nile, and Kansas river basins. As in@16#,
we also examine Scheidegger’s model of directed, rand
networks@13#. Both real and model networks provide impo
tant tests and motivations for our generalizations of Horto
laws.

We begin with definitions of stream ordering and Ho
ton’s laws. Thereafter, the paper is divided into two ma
sections. In Sec. III, we first sketch the theoretical gener
zation of Horton’s laws. Estimates of the Horton ratios a
carried out in Sec. IV and these provide basic parameter
the generalized laws. Empirical evidence from re
continent-scale networks is then provided along with d
from Scheidegger’s random network model in Sec. V.
Sec. VI, we derive the higher-order moments for stre
length distributions, and in Sec. VII, we consider deviatio
from Horton’s laws for large basins. In the Appendix, w
expand on some of the connections outlined in Sec. V, p
senting a number of mathematical considerations on th
generalized Horton distributions.

This paper is the second in a series of three on the ge
etry of river networks. In the first@16#, we addressed issue
of scaling and universality and provided further motivati
for our general investigation. In the third article of the ser
@21#, we extend the work of the present paper by examin
the detailed architecture of river networks, i.e., how netwo
components fit together.

ic
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PETER SHERIDAN DODDS AND DANIEL H. ROTHMAN PHYSICAL REVIEW E63 016116
II. STREAM ORDERING AND HORTON’S LAWS

Stream ordering was first introduced by Horton in an
fort to quantify the features of river networks@17#. The
method was later improved by Strahler to give the pres
technique of Horton-Strahler stream ordering@22#. Stream
ordering is a method applicable to any field where branch
hierarchical networks are important. Indeed, much use
stream ordering has been made outside of the context of
networks, a good example being the study of venous
arterial blood networks in biology@23–30#. We describe two
conceptions of the method and then discuss empirical l
defined within the context of stream ordering.

A network’s constituent stream segments are ordered
an iterative pruning. An example of stream ordering for t
Mississippi basin is shown in Fig. 1. A source stream
defined as a section of stream that runs from a channel h
to a junction with another stream~for an arboreal analogy
think of the leaves of a tree!. These source streams are cla
sified as the first-order stream segments of the netw
Next, remove these source streams and identify the
source streams of the remaining network. These are
second-order stream segments. The process is repeated
one stream segment is left of orderV. The order of the
network is then defined to beV.

Once stream ordering on a network has been done, a n
ber of natural quantities arise. These includenv , the number
of basins~or equivalently stream segments! for a given order
v; l̄ v, the average main stream length;l̄ v

(s), the average
stream segment length;āv, the average basin area; and t
variation in these numbers from order to order. Horton@17#
and later Schumm@18# observed that the following ratios ar
generally independent of orderv:

nv

nv11
5Rn ,

l̄ v11

l̄ v

5Rl ,
āv11

āv
5Ra . ~1!

Since the main stream length averagesl̄ v are combinations

FIG. 1. Stream segments forv58 up to v5V511 for the
Mississippi River. The spherical coordinates of latitude and lon
tude~measured here in degrees! are used and the scale correspon
to roughly 2000 km along each axis.
01611
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of stream segment lengthsl̄ v5(n51
v l̄ v

(s) , we have that the
Horton ratio for stream segment lengthsRl (s) is equivalent to
Rl . Because our theory will start with distributions of th
l v
(s), we will generally use the ratioRl (s) in place ofRl .

Horton’s laws have remained something of a mystery
geomorphology—the study of earth surface processes
form—due to their apparent robustness and hence perce
lack of physical~or geological! content. However, statemen
that Horton’s laws are ‘‘statistically inevitable’’@31#, while
possibly true, have not yet been based on reasonable ass
tions @3#. Furthermore, many other scaling laws can
shown to follow in part from Horton’s laws@8#. Thus, Hor-
ton’s laws being without content would imply the same
true for those scaling laws that follow from them. Other su
ficient assumptions include uniform drainage density~i.e.,
networks are space-filling! and self-affinity of single chan-
nels. The latter can be expressed as the relation@7,32–34#

l}L i
d , ~2!

where L i is the longitudinal diameter of a basin. Scalin
relations may be derived and the set of relevant scaling
ponents can be reduced to just two:d as given above and th
ratio lnRl(s) /ln Rn @8#. Note that one obtainsRa[Rn so that
only the two Horton ratiosRn and Rl (s) are independent
Horton ratios are thus of central importance in the full theo
of scaling for river networks.

III. POSTULATED FORM OF HORTON DISTRIBUTIONS

Horton’s laws relate quantities that are indexed by a d
crete set of numbers, namely the stream orders. They
algebraically relate mean quantities such asāv . Hence, we
may consider a generalization to functional relationships
tween probability distributions. In other words, for strea
lengths and drainage areas, we can explore the relations
between probability distributions defined for each order.

Furthermore, as we have noted, Horton’s laws can
used to derive power laws of continuous variables such
the probability distributions of drainage areaa and main
stream lengthl @7,8,35#:

P~a!}a2t, P~ l !} l 2g. ~3!

These derivations necessarily only give discrete points
power laws. In other words, the derivations give points
functions of the discrete stream orderv and are uniformly
spaced logarithmically and we interpolate the power l
from there. The distributions for stream lengths and ar
must therefore have structures that when combined ac
orders produce smooth power laws.

For the example of the stream segment lengthl v
(s) , Hor-

ton’s laws state that the meanl̄ v
(s) grows by a factor ofRl (s)

with each integer step in orderv. In consideringP( l v
(s) ,v),

the underlying probability distribution function forl v
(s) , we

postulate that Horton’s laws apply for every moment of t
distribution and not just the mean. This generalization
Horton’s laws may be encapsulated in a statement abou
distributionP( l v

(s) ,v) as

i-
s

6-2
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GEOMETRY OF RIVER NETWORKS. II. . . . PHYSICAL REVIEW E63 016116
P~ l v
~s! ,v!5Cl ~s!~RnRl ~s!!2vFl ~s!~ l v

~s!Rl ~s!
2v

!. ~4!

The factor of (Rn)2v indicates that* l (s)50
` dl (s)P( l v

(s) ,v)
}(Rn)2v, i.e., the frequency of stream segments of ordev
decays according to Horton’s law of stream number given
Eq. ~1!. Similarly, for l v , av , andnV,v , we write

P~ l v ,v!5Cl~RnRl ~s!!2vFl~ l vRl ~s!
2v

!, ~5!

P~av ,v!5Ca~Rn
2!2vFa~avRn

2v!, ~6!

and

P~nV,v!5Cn~Rn!V2vFn~nV,vRn
2v!, ~7!

where constantsCl (s), Cl , Ca, and cn are appropriate nor
malizations. We have used the subscripted versions of
lengths and areas,l v

(s) , l v , andav , to reinforce that these
parameters are for points at the outlets of orderv basins
only. The quantitynV,v is the number of streams of orderv
within a basin of orderV. This will help with some nota-
tional issues later on. The form of the distribution functio
Fl (s), Fl , Fa , andFn and their interrelationships become th
focus of our investigations. Since scaling is inherent in e
of these postulated generalizations of Horton’s laws, we w
often refer to these distribution functions asscaling func-
tions.

We further postulate that distributions of stream segm
lengths are best approximated by exponential distributio
Empirical evidence for this will be provided later on in Se
V. The normalized scaling functionFl (s)(u) of Eq. ~4! then
has the form

Fl ~s!~u!5
1

j
e2u/j5Fl ~s!~u;j!, ~8!

where we have introduced a new length scalej and stated its
appearance with the notationFl (s)(u;j). The value ofj is
potentially network dependent. As we will show, distrib
tions of main stream lengths, areas, and stream numbe
all dependent onj and this is the only additional paramet
necessary for their description. Note thatj is both the mean
and standard deviation ofFl (s)(u;j), i.e., for exponential dis-
tributions, fluctuations of a variable are on the order of
mean value. We may therefore think ofj as afluctuation
length scale. Note that the presence of exponential distrib
tions indicates a randomness in the physical distribution
streams themselves and this is largely the topic of our th
paper@21#.

Since main stream lengths are combinations of stre
segment lengths, i.e.,l v5( i 51

v l v
(s) , we have that the distri-

butions of main stream lengths of orderv basins are approxi
mated by convolutions of the stream segment length dis
butions. For this step, it is more appropriate to u
conditional probabilities such asP( l v

(s)uv) where the basin
orderv is taken to be fixed. We thus write

P~ l vuv!5P~ l 1
~s!u1!* P~ l 2

~s!u2!*¯* P~ l v
~s!uv!, ~9!
01611
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where* denotes convolution. Details of the form obtaine
are given in section 1 of the Appendix.

The next step takes us to the power-law distribution
main stream lengths. Summing over all stream orders
integrating overu5 l v we have

P~ l !. (
v51

` E
u5 l

`

du P~u,v!, ~10!

where we have returned to the joint probability for this c
culation. The integral overu is replaced by a sum whe
networks are considered on discrete lattices. Note that
probability of finding a main stream of lengthl is indepen-
dent of any sort of stream ordering since it is defined on
unordered network. The details of this calculation may
found in section 2 of the Appendix, where it is shown tha
power lawP( l )} l 2g follows from the deduced form of the
P( l v ,v) with g5 ln Rn /ln Rl(s).

IV. ESTIMATION OF HORTON RATIOS

We now examine the usual Horton laws in order to es
mate the Horton ratios. These ratios are seen as intri
parameters in the probability distribution functions giv
above in Eqs.~4!–~7!.

Figure 2~a! shows the stream order averages ofl (s), l, a,
andn for the Mississippi basin. Deviations from exponent
trends of Horton’s laws are evident and indicated by dev
tions from straight lines on the semilogarithmic axis. Su
deviations are to be expected for the smallest and lar
orders within a basin@8,21#. For the smallest orders, th
scale of the grid used becomes an issue but even with infi
resolution, the scaling of lengths, areas, and number for
orders cannot all hold at the same time@8#. For large orders,
the decrease in sample space contributes to these fluctua
since the number of samples of orderv streams decays ex
ponentially with order as (Rn)V2v. Furthermore, correla-
tions with overall basin shape provide another source of
viations @21#. Nevertheless, in our theoretical investigatio
below, we will presume exact scaling. Note also that
equivalence ofRn andRa is supported by Fig. 2~b! where the
stream numbersnw have been inverted for comparison. Sim
lar agreement is found for the Amazon and Nile as shown
Tables I, II, and III, which we now discuss.

Table I shows the results of regression on the Mississ
data for various ranges of stream orders for stream num
area, and lengths. Tables II and III show the same res
carried out for the Amazon and Nile. Each table prese
estimates of the four ratiosRn , Ra , Rl , and Rl (s). Also
included are the comparisonsRa /Rn and Rl /Rl (s), both of
which we expect to be close to unity. For each quantity,
calculate the meanm, standard deviations, and normalized
deviations/m.

Note the variation of exponents with choice of ord
range. This is the largest source of error in the calculation
the Horton ratios. Therefore, rather than taking a single ra
of stream orders for the regression, we examine a collec
of ranges. Also, the deviations for high and low orders o
served in Figs. 2~a! and 2~b! do of course affect measure
6-3
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FIG. 2. Horton’s laws for the orderV511 Mississippi river basin network. For~a!, the ordinate axis is logarithmic~base 10! representing

the number for stream numbernv ~circles!, km2 for areaāv ~squares!, and km for both main stream lengthl̄ v ~triangles! and stream segmen

length l̄ v
(s) ~diamonds!. The stream orderv is dimensionless. Note the good agreement betweenl̄ v and l̄ v

(s) . In ~b!, the stream number dat
nv ~circles! has been inverted from that in~a!, i.e., the plot is ofnv

21. This is compared with the dimensionlessāv /āV ~squares! showing
good support for the prediction that the slopes are equal, i.e.,Ra[Rn .
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ments of the Horton ratios. In all cases, we have avoi
using data for the smallest and largest orders.

For the three example networks given here, the statem
Ra[Rn and Rl[Rl (s) are well supported. The majority o
ranges giveRn /Ra and Rl /Rl (s) very close to unity. The
averages are also close to 1 and are different from u
mostly by within 1.0 and uniformly by within 1.5 standar
deviations.

The normalized deviations, i.e.,s/m, for the four ratios
are all below 0.05. No systematic ordering of thes/m is
observed. Of all the data, the values forRl in the case of the
Mississippi are the most notably uniform havings/m
50.015. Throughout there is a slight trend for regression
01611
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lower orders to overestimate and on higher orders to un
estimate the average ratios, while reasonable consisten
found at intermediate orders.

Thus, overall the ranges chosen in the tables give a
sonably even set of estimates of the Horton ratios and
will use these averages as our estimates of the ratios.

V. EMPIRICAL EVIDENCE
FOR HORTON DISTRIBUTIONS

A. Stream segment length distributions

We now present Horton distributions for the Mississip
Amazon, and Nile river basins as well as the Scheideg
ot
the
TABLE I. Horton ratios for the Mississippi River@36#. For each range of orders (v1 ,v2), estimates of
the ratios are obtained via simple regression analysis. For each quantity, a meanm, standard deviations and
normalized deviations/m are calculated. All ranges with 2<v1,v2<8 are used in these estimates, but n
all are shown. The values obtained forRl are especially robust while some variation is observed for
estimates ofRn andRa . Good agreement is observed between the ratiosRn andRa and also betweenRl and
Rl (s).

v range Rn Ra Rl Rl (s) Ra /Rn Rl /Rl (s)

@2,3# 5.27 5.26 2.48 2.30 1.00 1.07
@2,5# 4.86 4.96 2.42 2.31 1.02 1.05
@2,7# 4.77 4.88 2.40 2.31 1.02 1.04
@3,4# 4.72 4.91 2.41 2.34 1.04 1.03
@3,6# 4.70 4.83 2.40 2.35 1.03 1.03
@3,8# 4.60 4.79 2.38 2.34 1.04 1.02
@4,6# 4.69 4.81 2.40 2.36 1.02 1.02
@4,8# 4.57 4.77 2.38 2.34 1.05 1.01
@5,7# 4.68 4.83 2.36 2.29 1.03 1.03
@6,7# 4.63 4.76 2.30 2.16 1.03 1.07
@7,8# 4.16 4.67 2.41 2.56 1.12 0.94

Meanm 4.69 4.85 2.40 2.33 1.04 1.03
Standard deviations 0.21 0.13 0.04 0.07 0.03 0.03

s/m 0.045 0.027 0.015 0.031 0.024 0.027
6-4
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TABLE II. Horton ratios for the Amazon@37#. Details are as per Table I.

v range Rn Ra Rl Rl (s) Ra /Rn Rl /Rl (s)

@2,3# 5.05 4.69 2.10 1.65 0.93 1.28
@2,5# 4.65 4.64 2.11 1.92 1.00 1.10
@2,7# 4.54 4.63 2.16 2.11 1.02 1.03
@3,4# 4.54 4.73 2.10 2.01 1.04 1.05
@3,6# 4.51 4.62 2.15 2.15 1.02 1.00
@3,8# 4.44 4.55 2.19 2.23 1.02 0.98
@4,6# 4.52 4.59 2.18 2.24 1.02 0.97
@4,8# 4.42 4.51 2.21 2.27 1.02 0.97
@5,7# 4.39 4.62 2.25 2.39 1.05 0.94
@6,7# 4.19 4.55 2.26 2.40 1.09 0.94
@7,8# 4.50 4.21 2.15 2.12 0.94 1.02

Meanm 4.51 4.58 2.17 2.15 1.01 1.02
Standard deviations 0.17 0.12 0.05 0.19 0.03 0.08

s/m 0.038 0.026 0.024 0.089 0.034 0.078
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model. Scheidegger networks may be thought of as col
tions of random-walker streams and are fully defined in@16#
and extensively studied in@21#. The forms of all distributions
are observed to be the same in the real data and in the m

The first distribution is shown in Fig. 3~a!. This is the
probability density function ofl 4

(s) fourth-order stream seg
ment lengths, for the Mississippi River. Distributions for d
ferent orders can be rescaled to show satisfactory agreem
This is done using the postulated Horton distribution
stream segment lengths given in Eq.~4!. The rescaling is
shown in Fig. 3~b! and is for ordersv53, . . . ,6.Note that
the effect of the exponential decrease in the number
samples with order is evident forv56 sinceP( l 6

(s)) is con-
siderably scattered. Nevertheless, the figure shows the
of these distributions to be most closely approximated
exponentials. We observe similar exponential distributio
for the Amazon, the Nile, and the Scheidegger model. T
fluctuation length scalej is found to be approximately 800 m
for the Mississippi, 1600 m for the Amazon, and 1200 m
the Nile.

Sincej is based on the definition of stream ordering, co
parisons ofj are only sensible for networks that are me
01611
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sured on topographies with the same resolution. The ab
values of j are approximate and our confidence in the
would be improved with higher-resolution data. Neverth
less, they do suggest that fluctuations in network struct
increase as we move from the Mississippi through to
Nile, and then the Amazon.

B. Main stream segment length distributions

The distributions ofv54 main stream lengths for th
Amazon River are shown in Fig. 4~a!. Since main stream
lengths are sums of stream segment lengths, their distribu
has a single peak away from the origin. However, these
tributions will not tend towards a Gaussian because the in
vidual stream length distributions do not satisfy the requi
ments of the central limit theorem@39#. This is because the
moments of the stream segment length distributions g
exponentially with stream order. As the semilogarithm
axes indicate, the tail may be reasonably well~but not ex-
actly! modeled by exponentials. There is some variation
the distribution tails from region to region. For examp
corresponding distributions for the Mississippi data do e
hibit tails that are closer to exponentials. However, for t
TABLE III. Horton ratios for the Nile@38#. Details are as per Table I. Here 2<v1,v2<7.

v range Rn Ra Rl Rl (s) Ra /Rn Rl /Rl (s)

@2,3# 4.78 4.71 2.47 2.08 0.99 1.19
@2,5# 4.55 4.58 2.32 2.12 1.01 1.10
@2,7# 4.42 4.53 2.24 2.10 1.02 1.07
@3,5# 4.45 4.52 2.26 2.14 1.01 1.06
@3,7# 4.35 4.49 2.20 2.10 1.03 1.05
@4,6# 4.38 4.54 2.22 2.18 1.03 1.02
@5,6# 4.38 4.62 2.22 2.21 1.06 1.00
@6,7# 4.08 4.27 2.05 1.83 1.05 1.12

Meanm 4.42 4.53 2.25 2.10 1.02 1.07
Standard deviations 0.17 0.10 0.10 0.09 0.02 0.05

s/m 0.038 0.023 0.045 0.042 0.019 0.045
6-5
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FIG. 3. Plot~a! shows an example distribution of stream segment lengths,P( l v
(s) ,v), for the Mississippi for orderv54. The lengths here

are in kilometers. The semilogarithmic axes indicate the distribution is well approximated by an exponential. The value of the leng
j @see Eq.~8!# is estimated to be approximately 800 m. Rescaled versions of the same stream segment length distributions forv53 ~circles!,
v54 ~squares!, v55 ~triangles!, andv56 ~diamonds!, are shown in~b!. The rescaling is done according to Eq.~4!. The values of the
Horton ratios used areRn54.69 andRl (s)52.33 as determined from Table I.
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present work where we are attempting to characterize
basic forms of the Horton distributions, we consider the
deviations to be of a higher-order nature and belonging to
realm of further research.

In accord with Eq.~5!, Fig. 4~b! shows the rescaling o
the main stream length distributions forv53, . . . ,6. The
ratios used,Rn54.49 andRl52.19(.Rl (s)52.17) are taken
from Table II. Given the scatter of the distributions, it
unreasonable to perform minimization techniques on the
caled data itself in order to estimateRn andRl . This is best
done by examining means, as we have done, and hig
order moments, which we discuss below. Furthermore, va
ing Rn andRl from the above values by, say,60.05 does not
greatly distort the visual quality of the ‘‘data collapse.’’

Similar results for the Scheidegger model are shown
Fig. 5. The Scheidegger model may be thought of as a
01611
e
e
e

s-

r-
y-

n
t-

work defined on a triangular lattice where at each lattice
one of two directions is chosen as the stream path@16,21#.
Figure 5~a! gives a single example distribution for ma
stream lengths of orderv56 basins. The tail is exponentia
as per the real world data. Figure 5~b! shows a collapse o
main stream length distributions for ordersv54 through 7.
In contrast to the real data where an overall basin orde
fixed ~V!, there is no maximum basin order here. The dis
butions in Fig. 5~b! have an arbitrary normalization, meanin
that the absolute values of the ordinate are also arbitr
Otherwise, this is the same collapse as given in Eq.~5!. For
the Scheidegger model, our simulations yieldRn.5.20 and
Rl (s).3.00@8#. For all distributions, we observe similar func
tional forms for real networks and the Scheidegger mod
the only difference lying in parameters such as the Hor
ratios.
d

FIG. 4. Plot ~a! shows an example distribution for orderv55 main stream lengths~measured in kilometers! for the Amazon. The
distribution is unimodal with what is a reasonable approximation of an exponential tail. In~b!, distributions of main stream length forv
53 ~circles!, v54 ~squares!, v55 ~triangles!, andv56 ~diamonds! are rescaled according to Eq.~5!. The values of the Horton ratios use
here areRn54.51 andRl (s)52.17, taken from Table II.
6-6
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FIG. 5. Given in~a! is an example distribution of orderv56 main stream lengths for the Scheidegger model. Lengths are give
arbitrary lattice units. The same form is observed as for real networks such as the Amazon~Fig. 4!. In the same way as Fig. 4~b!, ~b! show
rescaled distributions of main stream length forv54 ~circles!, v55 ~squares!, v56 ~triangles!, andv57 ~diamonds!. Note that in~b!,
distributions are not normalized with respect to a fixed basin orderV and hence the vertical offset is arbitrary. The values of the ratios u
here areRn.5.20 andRl.3.00 @8#.
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C. Drainage area distributions

Figure 6 shows more Horton distributions, this time f
drainage area as calculated for the Nile river basin. In Fig
an example distribution forv54 subbasins is presented. Th
distribution is similar in form to those of main stream lengt
of Fig. 4, again showing a reasonably clear exponential
Rescaled drainage area distributions forv53, . . . ,6 arepre-
sented in Fig. 6~b!. The rescaling now follows Eq.~6!. Note
that if Rn andRa were not equivalent, the rescaling would b
of the form

P~av ,v!5Ca~RnRa!s2vFa~avRa
2v!. ~11!

Since we have asserted thatRn[Ra , Eq. ~11! reduces to Eq.
~6!. The Horton ratio used here isRn54.42, which is in good
01611
6,

il.

agreement withRa54.53, the respective standard deviatio
being 0.17 and 0.10. Both figures are taken from the dat
Table III.

D. Summing distributions to form power laws

As stated in Sec. III, the Horton distributions ofav andl v

must combine to form power-law distributions fora and l
@see Eqs.~3! and ~10!#. Figure 7 provides empirical suppo
for this observation for the example main stream lengths
the Mississippi network. The distributions forv53, 4, and 5
main stream lengths are individually shown. Their combin
tion together with the distribution ofl 6 gives the reasonable
approximation of a power law as shown. The area distri
tions combine in the same way. Note that the distributions
not greatly overlap. Each point of the power law is therefo
FIG. 6. The distribution of drainage areas forv54 subbasins of the Nile are shown in~a!. All areas are measured in km2. An exponential
tail is observed as per the distributions of stream segment length~Fig. 3! and main stream length~Fig. 4!. In ~b!, distributions of drainage
area forv53 ~circles!, v54 ~squares!, v55 ~triangles!, andv56 ~diamonds!, are rescaled according to Eq.~6!. The rescaling uses the
estimateRn54.42 found in Table III.
6-7
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PETER SHERIDAN DODDS AND DANIEL H. ROTHMAN PHYSICAL REVIEW E63 016116
the addition of significant contributions from only two o
three of the separate distributions. The challenge here the
to understand how rescaled versions ofFl , being the basic
form of the P( l v ,v), fit together in such a clean fashio
The details of this connection are established in section
the Appendix.

E. Connecting distributions of number and area

In considering the generalized Horton distributions
number and area, we observe two main points: a calcula
in the vein of what we are able to do for main stream leng
is difficult; and, the Horton distributions for area and numb
are equivalent.

In principle, Horton area distributions may be deriv
from stream segment length distributions. This follows fro
an assumption of statistically uniform drainage dens
which means that the typical drainage area drained per
length of any stream is invariant in space. Apart from t
possibility of changing with space, which we will preclud
by assumption, drainage density does naturally fluctuate
well @16#. Thus, we can writea.r(vl v

(s), where the sum is
over all orders and all stream segments andr is the average
drainage density.

However, we need to know, for an example basin, h
many instances of each stream segment occur as a fun
of order. For example, the number of first-order streams in
orderV basin isnV,1 . Given the distribution of this number
we can then calculate the distribution of the total contrib
tion of drainage area due to first-order streams. But the
tributions ofnV,v are not independent, so we cannot proce
in this direction.

We could potentially use the typical number of orderv
streams, (Rn)V2v. Then, the distribution of total are
drained due to orderv streams would approach Gaussi

FIG. 7. Summation of main stream length distributions for t
Mississippi. Both axes are logarithmic, the unit of length is t
kilometer and the vertical axis is probability density with units
km21. Distributions ofl v for ordersv53 ~circles!, v54 ~squares!,
andv55 ~triangles!, are shown. As expected, the distributions su
together to give a power-law tail~stars!. The power-law distribution
~which is vertically offset by an order of magnitude for clarity! is
the summation of the distributions below as well as the distribut
for orderv56 main stream lengths.
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because the individual distributions are identical and the c
tral limit theorem would apply. However, because the flu
tuations in the total number of stream segments are so g
we lose too much information with this approach. Indeed,
distribution of area drained by orderv stream segments in
basin reflects variations in their number rather than leng
Again, we meet up with the problem of the numbers of d
tinct orders of stream segment lengths being dependent.

One final way would be to use Tokunaga’s law@8,40–43#.
Tokunaga’s law states that the number of ordern side
branches along an~absorbing! stream segment of orderm is
given by

Tk5T1~Rl ~s!!k21, ~12!

wherek5m2n. The parameterT1 is the average number o
side streams having ordern5m21 for every orderm ab-
sorbing stream. This gives a picture of how a network
together and may be seen to be equivalent to Horton’s l
@8#. Now, even though we also understand the distributio
underlying Tokunaga’s law@16#, similar technical problems
arise. On descending into a network, we find the numbe
stream segments at each level to be dependent on all o
above.

Nevertheless, we can understand the relationship betw
the distributions for area and number. What follows is a g
eralization of the finding thatRn[Ra . The postulated forms
for these distributions were given in Eqs.~6! and ~7!. Con-
sider nV,1 , the number of first-order streams in an orderV
basin. Assuming that, on average, first-order streams are
tributed evenly throughout a network, then this number
simply proportional toaV . As an example, Fig. 8 shows da
obtained for the Scheidegger model. For the Scheideg
model, first-order streams are initiated with a 1/4 probabi

n

FIG. 8. Comparison of number and area distributions for
Scheidegger model. Area is in terms of square lattice units. In
inset plot, the raw distributions shown areP(a6u6) ~circles! and
P(n6,1u6) ~continuous line!. The latter is the probability of finding
n6,1 source streams in an orderv56 basin. In the main plot, the
number distribution has been rescaled to be 1/4P(n6,1u6) as a func-
tion of 4n6,1 and the area distribution is unrescaled~the symbols are
the same as for the inset plot!. For the Scheidegger model, sourc
streams occur at any site with probability of 1/4, hence the resca
by a factor of 4.
6-8
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GEOMETRY OF RIVER NETWORKS. II. . . . PHYSICAL REVIEW E63 016116
when the flow at the two upstream sites is randomly direc
away, each with probability 1/2. Thus, for an areaaV , we
expect and findnV,v5aV/4.

For higher internal orders, we can apply a simple ren
malization. Assuming a system with exact scaling, the nu
ber of streamsnV,v is statistically equivalent tonV2v11,1.
Since the latter is proportional toaV2v11 , we have that

nv,v.rvaV2v11 , ~13!

where the constant of proportionality is the density of ord
v streams, Clearly, this equivalence improves as numbe
creases, i.e., the differenceV2v increases.

While we do not have exact forms for the area or num
distributions, we note that they are similar to the main stre
length distributions. Since source streams are linear ba
with the width of a grid cell, the distribution ofa1 is the
same as the distribution ofl 1 and l 1

(s) , a pure exponential
Hence,nV,V21 is also an exponential. For increasingv, the
distribution ofav becomes single peaked with an expone
tial tail, qualitatively the same as the main stream len
distributions.

VI. HIGHER-ORDER MOMENTS

Finally, we discuss the higher-order moments for the g
eralized Horton distributions. Figure 9 presents moments
distributions of main stream lengths for the case of the M
sissippi. These moments are calculated directly from
main stream length distributions. A regular logarithmic sp
ing is apparent in moments for orders ranging from 3 to

To see whether or not this is expected, we detail a f
small calculations concerning moments starting from the
ponential form of stream segment lengths given in Eq.~8!.
As noted previously, for an exponential distributio
Fl (s)(u)5j21e2u/j, the mean is simplŷu&5j. In general,
the qth moment of an exponential distribution is

^uq&5E
u50

` uq

j
e2u/j du5jqE

x50

`

xqe2x dx5q! jq.

~14!

FIG. 9. A comparison of moments calculated for main stre
length distributions for the Mississippi River. Lengths are in kil
meters.
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Assuming scaling holds exactly across all orders, the ab
is precisely^( l 1

(s))q&. Note that ^( l 1
(s))q&5q! ^ l 1

(s)&q. Since
the characteristic length of orderv streams is (Rl (s))v21, we
therefore have

^~ l v
~s!!q&5q! jq~Rl ~s!!~v21!q5q! ^ l v

~s!&q. ~15!

Since main stream lengths are sums of stream segm
lengths, so are their respective moments. Hence,

^~ l v!q&5 (
k51

v

^~ l ~s!
k!

q&,

5 (
k51

v

q! jq~Rl ~s!!~k21!q,

5q! jq(
k51

v

~Rl ~s!!~k21!q,

5q! jq
~Rl ~s!!qv21

Rl ~s!21
. ~16!

We can now determine the log-space separation of mom
of main stream length. Using Stirling’s approximation@44#
that lnn!;(n11/2)lnn2n we have

ln^~ l v!q&;q@j1~Rl ~s!!v1 ln q#1C, ~17!

whereC is a constant. The lnq term inside the square brack
ets in Eq.~17! creates small deviations from linearity for
<v<15. Thus, in agreement with Fig. 9, we expect appro
mately linear growth of moments in log space.

VII. LIMITATIONS ON THE PREDICTIVE POWER
OF HORTON’S LAWS

In this last section, we briefly examine deviations fro
scaling within this generalized picture of Horton’s laws. T
basic question is, given an approximate scaling for quanti
measured at intermediate stream orders, what can we
about the features of the overall basin?

As noted in the previous section, all moments of the g
eralized Horton distributions grow exponentially with orde
Coupling this with the fact thatnv}Rn

2v , i.e., the number of
samples of orderv basins decreases exponentially withv,
we observe that a basin’sa and l will potentially differ
greatly from values predicted by Horton’s laws.

To illustrate this, Fig. 10 specifically shows the distrib
tionsP( l 3) andP( l 4) scaled up to giveP( l 11) for the Congo
river. The Congo’s actual length measured at this 1000
resolution is represented by the solid line and is around 5
of the distribution’s mean, as indicated by the dashed li
Nevertheless, we see that the measured length is with
standard deviation of the predicted value.

In Table IV, we provide a comparison of predicted vers
measured main stream lengths and areas for the basins
ied here. The mean for the scaled up distributions overe
mates the actual values in all cases except for the Nile. A
apart from the Nile, all values are within a standard deviat
of the predicted mean. The coefficients of varia-tion,sa /āV
6-9
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PETER SHERIDAN DODDS AND DANIEL H. ROTHMAN PHYSICAL REVIEW E63 016116
ands l / l̄ V , all indicate that fluctuations are on the order
the expected values of stream lengths and areas.

Thus, we see that by using a probabilistic point of vie
this generalized notion of Horton’s laws provides a way
discerning the strength of deviations about the expec
mean. In general, stronger deviations would imply that g
logic conditions play a more significant role in setting t
structure of the network.

VIII. CONCLUSION

The objective of this work has been to explore the und
lying distributions of river network quantities defined wi
stream ordering. We have shown that functional relati
ships generalize all cases of Horton’s laws. We have ide
fied the basic forms of the distributions for stream segm
lengths~exponential! and main stream lengths~convolutions
of exponentials! and shown a link between number and ar
distributions. Data from the continent-scale networks of
Mississippi, Amazon, and Nile river basins as well as fro
Scheidegger’s model of directed random networks provi

FIG. 10. Comparing the generalized Horton length distribut
rescaled to the level of orderV511 basins with the Congo Rive
itself. Lengths are in kilometers. The two distributions are for
dersv53 ~squares! andv54 ~circles! stream lengths and the Hor
ton ratio is estimated to beRl52.39. The dashed line represents t
mean of these scaled up distributions, while the solid line ma

l̄ 11, the measured length of the Congo at a 1000-m resolution.
actual length is within a standard deviation of the mean be

around 50% ofl̄ 11. Table IV shows comparisons for various rive
networks for both area and length data.
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both agreement with and inspiration for the generalizatio
of Horton’s laws. Finally, we have identified a fluctuatio
length scalej that is a reinterpretation of what was prev
ously identified as only a mean value. We see the study
the generalized Horton distributions as integral to increas
our understanding of river network structure. We also s
gest that practical network analysis be extended to meas
ments of distributions and the length scalej with the aim of
refining our ability to distinguish and compare netwo
structure.

By taking account of fluctuations inherent in netwo
scaling laws, we are able to see how measuring Horto
laws on low-order networks is unavoidably problemat
Moreover, as we have observed, the measurement of
Horton ratios is in general a delicate operation, sugges
that many previous measurements are not without error.

The theoretical understanding of the growth and evolut
of river networks requires a more thorough approach to m
surement and a concurrent improvement in the statistical
scription of river network geometry. The present consid
ation of a generalization of Horton’s laws is a necessary s
in this process, giving rise to stronger tests of both real a
synthetic data. In the following paper@21#, we round out this
expanded picture of network structure by considering
spatial distribution of network components.
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APPENDIX: ANALYTIC CONNECTIONS BETWEEN
STREAM LENGTH DISTRIBUTIONS

In this appendix, we consider a series of analytic calcu
tions. These concern the connections between the distr
tions of stream segment lengthsl v

(s) , ordered basin main
stream lengthsl v , and main stream lengthsl. We will ide-
alize the problem in places, assuming perfect scaling
infinite networks, while making an occasional salubrious a
proximation. Also, we will treat the problem of lengths full
noting that derivations of distributions for areas follow sim
lar, but more complicated lines.

-

s

e
g

ll lengths
TABLE IV. Comparison of predicted versus measured main stream lengths for large scale river networks. The dimensions of a

and areas are 106 m and 1012 m2, respectively. Here,l V is the actual main stream length of the basin,l̄ V the predicted mean value ofl V , s l

the predicted variance, ands l / l̄ V the normalized deviation. The entries for the basin area data have corresponding definitions.

Basin l V l̄ V
s l l V / l̄ V s l / l̄ V

aV āV sa aV /āV sa /āV

Mississippi 4.92 11.10 5.60 0.44 0.51 2.74 7.55 5.58 0.36 0.74
Amazon 5.75 9.18 6.85 0.63 0.75 5.40 9.07 8.04 0.60 0.89
Nile 6.49 2.66 2.20 2.44 0.83 3.08 0.96 0.79 3.19 0.82
Congo 5.07 10.13 5.75 0.50 0.57 3.70 10.09 8.28 0.37 0.82
Kansas 1.07 2.37 1.74 0.45 0.73 0.14 0.49 0.42 0.28 0.86
6-10
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We begin by rescaling the form of stream segment len
distributions

P~ l v
~s! ,v!5~Rn21!~RnRl ~s!!2vFl ~s!~ lRl ~s!

2v
!. ~A1!

The normalizationCl (s)5Rn21 stems from the requiremen
that

E
u50

`

Fl ~s!~u!51, ~A2!

which is made purely for aesthetic purposes. As we h
suggested in Eq.~8! and demonstrated empirical support fo
Fl (s)(u) is well approximated by the exponential distributio
j21e2u/j. For low u and also we have noted that deviatio
do of course occur, but they are sufficiently insubstantia
to be negligible for a first-order treatment of the problem

1. Distributions of main stream lengths as a function
of stream order

We now derive a form for the distribution of main strea
lengths P( l vuv). As we have discussed, sincel v

5( i 51
v l v

(s) , we have the convolution~9!. The right-hand side
of Eq. ~9! consists of exponentials as per Eq.~8!, so we now
consider the functionKv(u;aW ) given by

Kv~u;aW !5a1e2a1u* a2e2a2u*¯* ave2avu, ~A3!

whereaW 5(a1 ,a2 ,...,av). We are specifically interested i
the case when no two of theai are equal, i.e.,aiÞaj for all
iÞ j . To compute thisv-fold convolution, we simply exam-
01611
h

e

s

ine theKv(u;aW ) for v52 andv53 and identify the emerg-
ing pattern. ForaW 5(a1 ,a2) we have, omitting the prefactor
for the time being,

e2a1u* e2a2u5
e2a1u2e2a2u

a12a2
5

e2a1u

a12a2
1

e2a2u

a22a1
~A4!

providing a1Þa2 . Convolving this withe2a3u, we obtain

e2a1u* e2a2u* e2a3u

5S e2a1u2e2a2u

a12a2
D * e2a3u

5
e2a1u2e2a3u

~a12a2!~a12a3!
2

e2a2u2e2a3u

~a12a2!~a22a3!

5
e2a1u

~a12a2!~a12a3!
1

e2a2u

~a22a1!~a22a3!

1
e2a3u

~a32a1!~a32a2!
. ~A5!

Generalizing from this point, we have

Kv~u;aW !5S )
i 51

v

ai D (
i 51

v
e2aiu

)
j 51,j Þ i

v

~ai2aj !

. ~A6!

Now, settingai51/„j(Rl (s)) i 21
… and carrying out some ma

nipulations we obtain the following expression forP( l v ,v):
P~ l v ,v!5
1

~Rn!v

1

)
j 51

v

j~Rl ~s!! i 21

(
i 51

v
e2 l v /j~Rl ~s!! i 21

)
j 51,j Þ i

v

@1/j~Rl ~s!! i 2121/j~Rl ~s!! j 21#

5
1

~Rn!v

1

)
j 51

v

~Rl ~s!! j 21

(
i 51

v

e2 l v /j~Rl ~s!! i 21
jv21

)
j 51,j Þ i

v

~Rl ~s!! i 21 )
j 51,j Þ i

v

~Rl ~s!! j 21

)
j 51,j Þ i

v

~Rl ~s!! j 212~Rl ~s!! i 21

5
1

~Rn!v

jv21

jv (
i 51

v

e2 l v /j~Rl ~s!! i 21

~Rl ~s!!22~ i 21!)
j 51

v

~Rl ~s!! i 21)
j 51

v

~Rl ~s!! j 21)
k51

v

~Rl ~s!!2~ j 21!

~Rl ~s!!2~v21! )
j 51,j Þ i

v

~Rl ~s!! j2~Rl ~s!! i

5
1

~Rn!v

1

j (
i 51

v

e2 l v /j~Rl ~s!! i 21 ~Rl ~s!!~ i 21!~v22!~Rl ~s!!v22/Rl ~s!

)
j 51,j Þ i

v

~Rl ~s!! j2~Rl ~s!! i

5
1

~Rn!v

1

jRl ~s!
(
i 51

v

e2 l v /j~Rl ~s!! i 21 ~Rl ~s!! i ~v22!

)
j 51,j Þ i

v

~Rl ~s!! j2~Rl ~s!! i

. ~A7!
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Note that we have added in a factor of 1/(Rn)v for the ap-
propriate normalization. In addition, one observes t
P(0,v)50 for all v.1 since all convolutions of pairs o
exponentials vanish at the origin. Furthermore, the tail of
distribution is dominated by the exponential correspond
to the largest stream segment.

The next step is to connect to the power-law distribut
of main stream lengths,P( l ) ~see Fig. 7 and the accompa
nying discussion!. On considering Eq.~10!, we see that the
problem can possibly be addressed with some form
asymptotic analysis.

Before attacking this calculation, however, we will sim
plify the notation keeping only the important details of t
P( l v ,v). Our main interest is to see how Eq.~10! gives rise
to a power law. We transform the outcome of Eq.~A7! by
usingn5v, u5 l v /j, r 5Rl (s), ands5Rn , neglecting mul-
tiplicative constants and then summing over stream order
obtain

G~u!5 (
n51

`
1

sn (
i 51

n
r ~n22!ie2u/r i 21

)
j 51,j Þ i

n

~r j2r i !

. ~A8!

The integration overl v has been omitted, meaning that th
result will be a power law with one power lower than e
pected.

2. Power-law distributions of main stream lengths

We now show that this sum of exponentialsG(u) in Eq.
~A8! does in fact asymptotically tend to a power law. W
first interchange the order of summation replacing(n51

` ( i 51
n

with ( i 51
` (n5 i

n to give

G~u!5(
i 51

`

e2u/r i 21

(
n51

`
r ~n22!i

sn )
j 51,j Þ i

n

~r j2r i !

,

5(
i 51

`

Cie
2u/r i 21

. ~A9!

We thus simply have a sum of exponentials to contend w
The coefficientsCi appear unwieldy at first, but do yield
simple expression after some algebra that we now perfo

~A10!
Ci5 (

n51

`
r ~n22!i

sn )
j 51,j Þ i

n

~r j2r i !

5
1

)
j 51

i 21

~r j2r i !

(
n5 i

`
r ~n22!i

sn )
j 5 i 11

n

~r j2r i !

5
r ~ i 22!i

)
j 51

i 21

~r j2r i !

1

si (
n5 i

`
sir ~n22!i r 2~ i 22!i

sn )
j 5 i 11

n

~r j2r i !
01611
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:

5
1

)
j 51

i 21

r 2 i~r j2r i !

r 2 i

si (
n5 i

`
r ~n2 i !i

sn2 i )
j 5 i 11

n

~r j2r i !

5
1

)
j 51

i 21

~r j 2 i21!

1

r isi (
n5 i

`
1

)
j 5 i 11

n

sr2 i~r j2r i !

5
1

r isi

1

)
j 51

i 21

~r j 2 i21!

(
n5 i

`

)
j 5 i 11

n
1

s~r j 2 i21!

5
1

r isi

1

)
j 51

i 21

~r j 2 i21!

(
n5 i

`

)
j 5 i 11

n
1

s~r j 2 i21!

5
1

r isi S 21

)
k51

i 21

~12r 2k!D S (
m51

`

)
k51

m
1

s~r k21!D .

In reaching the last line, we have shifted the indices in s
eral places. In the last bracketed term we have setk5 j 2 i
and thenm5n2 i , while in the first bracketed term, we hav
used2k5 j 2 i . Immediately of note is that the last term
independent ofi and may thus be ignored.

The first bracketed term does depend oni, but converges
rapidly. Writing Di5)k51

i 21 (12r 2k) we have that Di

5Dm)k5m
i 21 (12r 2k). Takingm to be fixed and large enoug

such that 12r 2k is approximated well by exp$2r2k% for k
>m, we then have

Di5Dm expH (
k5m

i 21

2r 2kJ
5Dm expH r 12m

~r 21!
~121/r i 2m21!J . ~A11!

As i→`, Di clearly approaches a product ofDm and a con-
stant. Therefore, the first bracketed term in Eq.~A10! may
also be neglected in an asymptotic analysis.

Hence, asi→`, the coefficientsCi are simply given by

Ci}
1

sir i , ~A12!

and we can approximateG(u) as, boldly using the equality
sign,

G~u!5AS~u!5A(
i 50

`
e2u/r i

r i ~11g! , ~A13!

whereA comprises the constant part of theCi and factors
picked up by shifting the lower limit of the indexi from 1 to
0. We have also used here the identification
6-12
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s5r g. ~A14!

We turn now to the asymptotic behavior ofS(u), this being
the final stretch of our analysis.

There are several directions one may take at this po
We will proceed by employing a transformation ofS(u) that
is sometimes referred to as the Sommerfeld-Watson trans
mation and also as Watson’s lemma~@45#, p. 239!. Given a
sum over any set of integersI, sayS5(nPI f (n), it can be
written as the following integral:

S5
1

2p i R
C

p cospz

sinpz
f ~z!dz, ~A15!

whereC is a contour that contains the points on the real a
n1 i0 wherenPI and none of the points of the same for
with nPZ/I . Calculation of the residues of the simple pol
of the integrand return us to the original sum.

Applying the transformation toS(u), we obtain

S~u!5
1

2p i R
C

p cospz

sinpz
e2ur2z

r 2z~11g!dz. ~A16!

The contourC is represented in Fig. 11.
We first make a change of variables,r 2z 5r. Substituting

this anddz52dr/r ln r into Eq. ~A16! we have

S~u!5
1

2p i R
C

8 p cos~2p ln r/ ln r !

sin~2p ln r/ ln r !

3e2urr~11g!~2dr/r ln r !

5
1

2i ln r R
C

8 p cos~2p ln r/ ln r !

sinp ln r/ ln r
e2urrg dr.

~A17!

The transformed contourC8 is depicted in Fig. 12.
As u→`, the contribution to integral from the neighbo

hood ofr50 dominates. The introduction of the sin and c
terms has created an interesting oscillation that has to
handled with some care. We now deform the integration c
tour C8 into the contourC9 of Fig. 13 focusing on the inter
val along the imaginary axis@2 i ,i #. Choosing this path will
simplify the cos and sin expressions, which at present h
logs in their arguments.

FIG. 11. ContourC used for evaluation of the integral given i
Eq. ~A16!. The poles are situated atn10i wherenP$0,1,2, . . . %.
01611
t.

r-

s

be
-

ve

The integral S(u) is now given by S(u).I (u)1c.c.,
where

I ~u!5
21

2i ln r E0

i p cosp ln r/ ln r

sinp ln r/ ln r
e2urrg dr. ~A18!

Writing r5s1 i t with s50, we havedr5 idt and the fol-
lowing for the cos and sin terms:

cosp ln r/ ln r 5
r ip/ ln r1r2 ip/ ln r

2

5
t ip/ ln re2p2/2 ln r1t2 ip/ ln rep2/2 ln r

2
,

~A19!

and

sinp ln r/ ln r 5
r ip/ ln r2r2 ip/ ln r

2i

5
t ip/ ln re2p2/2 ln r2t2 ip/ ln rep2/2 ln r

2i
.

~A20!

The cot term in the integrand becomes

cosp ln r/ ln r

sinp ln r/ ln r
52 i

11t2ip/ ln re2p2/ln r

12t2ip/ ln re2p2/ln r
52 i

11d~t!

12d~t!
,

~A21!

FIG. 12. ContourC8 used for evaluation of the integral given i
Eq. ~A17! as deduced from contourC ~Fig. 11! with the transfor-
mationr5r 2z. The negative real axis is a branch cut.

FIG. 13. ContourC9 used for evaluation of the integral given i
Eq. ~A16!. The poles are situated atn10i wherenP$0,1,2, . . . %.
6-13
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whered(t)5t2ip/ ln re2p2/ln r
. The integralI (u) now becomes

I ~u!5
i

2 ln r E0

1 11d~t!

12d~t!
e2 iuttgeipg/2 dt

5
eip~11g!/2

2 ln r E
0

1

e2 iurtg
11d~t!

12d~t!
dt. ~A22!

Now, since ud(t)u5e2p2/ln r
&1024 ~taking r 5Rl (s)'2.5),

we can expand the expression as follows:

11d

12d
5~11d!~11d1d21¯ !

5112d12d212d31¯ . ~A23!

The integral in turn becomes

I ~u!5
i 11g

2 ln r E0

1

dt tge2 iut~112t2ip/ ln re2p2/ln r

12t4ip/ ln re22p2/ln r1¯12t2nip/ ln re2np2/ln r1¯ !.

~A24!

The basicnth integral in this expansion is

I n~u!5E
0

1

tg12nip/ ln re2 iut dt. ~A25!

Substitutingut5w and replacing the upper limitw5u with
w5` we have

I n~u!5u2~11g12nip/ ln r !E
0

`

dw wg12nip/ ln re2 iw

5~ iu !2~11g12nip/ ln r !E
0

`

i dw~ iw !g12nip/ ln re2 iw

5~ iu !2~11g12nip/ ln r !E
0

`

dv~v !g12nip/ ln re2v

5~ iu !2~11g12nip/ ln r !G~g12nip/ ln r !. ~A26!

Here, we have rotated the contour along the imaginaryiw
axis to the realv axis and identified the integral with th
gamma functionG @44#. The integral can now be expresse
as
,

.

Sc

W

01611
I ~u!5
1

2 ln ru11g F112(
n51

`

u22nip/ ln rG~g12nip/ ln r !G .

~A27!

We now need to show that the higher-order terms are ne
gible. Note that their magnitudes do not vanish with incre
ing u, but instead are highly oscillatory terms. Using t
asymptotic form of the Gamma function@46#

G~z!5zz21/2e2zA2p@11O~1/z!#, ~A28!

we can estimate as follows for largen that

uG~11g12nip/ ln r !u

;u~2ipn/ ln r 111g!2ipn/ ln r 11/21ge2g21A2pu

5u~eip/22pn/ ln r !2ipn/ ln r 11/21ge2g21A2pu

5e2p2n/ ln rng11/2~2p/e!11g~ ln r !21/22g. ~A29!

Hence,G(11g12nip/ ln r) vanishes exponentially withn.
For the first few values ofn taking g53/2 andr 52.5, we
have G(11g12ip/ ln r).2.531023 and G(11g
14ip/ ln r).2.131026 showing that these corrections a
negligible.

Hence we are able to estimateS(u) to first order as

S~u!.
1

ln r
u212g. ~A30!

Thus, we have determined that a power law follows from
initial assumption that stream segment lengths follow ex
nential distributions.

This equivalence has been drawn as an asymptotic
albeit one where convergences have been shown to be r
The calculation is clearly not the entire picture as the so
tion does contain small rapidly-oscillating corrections that
not vanish with increasing argument. A possible remain
problem and one for further investigation is to understa
how the distributions for main stream lengthsl v fit together
over a range that is not to be considered asymptotic. Ne
theless, the preceding is one attempt at demonstrating
rather intriguing breakup of a smooth power law into a d
crete family of functions built up from one fundamental sc
ing function.
I.
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